Using association rules to discover search engines related queries

Bruno M. Fonseca, P. B. Golgher, E. Moura, N. Ziviani
{"title":"Using association rules to discover search engines related queries","authors":"Bruno M. Fonseca, P. B. Golgher, E. Moura, N. Ziviani","doi":"10.1109/LAWEB.2003.1250284","DOIUrl":null,"url":null,"abstract":"We present a method for automatic generate suggestions of related queries submitted to Web search engines. The method extracts information from the log of past submitted queries to search engines using algorithms for mining association rules. Experimental results were performed on a log containing more than 2.3 million queries submitted to a commercial searching engine giving correct suggestions in 90.5% of the top 5 suggestions presented for common queries extracted from a real log.","PeriodicalId":376743,"journal":{"name":"Proceedings of the IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE Cat. No.03EX726)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"137","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE Cat. No.03EX726)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAWEB.2003.1250284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 137

Abstract

We present a method for automatic generate suggestions of related queries submitted to Web search engines. The method extracts information from the log of past submitted queries to search engines using algorithms for mining association rules. Experimental results were performed on a log containing more than 2.3 million queries submitted to a commercial searching engine giving correct suggestions in 90.5% of the top 5 suggestions presented for common queries extracted from a real log.
使用关联规则发现与搜索引擎相关的查询
我们提出了一种自动生成提交给Web搜索引擎的相关查询建议的方法。该方法使用挖掘关联规则的算法从过去提交到搜索引擎的查询日志中提取信息。实验结果是在一个包含超过230万个查询的日志上执行的,该日志提交给一个商业搜索引擎,对从真实日志中提取的常见查询给出的前5条建议中,有90.5%的建议是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信