Divergence detectors for the δ-generalized labeled multi-Bernoulli filter

Stephan Reuter, B. Vo, Benjamin Wilking, D. Meissner, K. Dietmayer
{"title":"Divergence detectors for the δ-generalized labeled multi-Bernoulli filter","authors":"Stephan Reuter, B. Vo, Benjamin Wilking, D. Meissner, K. Dietmayer","doi":"10.1109/SDF.2013.6698263","DOIUrl":null,"url":null,"abstract":"In single-target tracking, divergence detectors like the normalized innovation squared (NIS) are used to detect if the assumed motion or measurement models deviate too much from the actual behavior of the tracked target or the sensor. A generalization of the divergence detectors to random finite set based multi-object tracking algorithms is possible and results in the multi-target generalized NIS (MGNIS). In this contribution the MGNIS for the δ-generalized labeled multi-Bernoulli filter is derived. Further, an approximate multi-target NIS (AMNIS) is proposed which facilitates easier interpretation of the results. The MGNIS and the AMNIS are compared to the well-known optimal subpattern assignment (OSPA) metric using simulated data with different clutter rates.","PeriodicalId":228075,"journal":{"name":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2013.6698263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In single-target tracking, divergence detectors like the normalized innovation squared (NIS) are used to detect if the assumed motion or measurement models deviate too much from the actual behavior of the tracked target or the sensor. A generalization of the divergence detectors to random finite set based multi-object tracking algorithms is possible and results in the multi-target generalized NIS (MGNIS). In this contribution the MGNIS for the δ-generalized labeled multi-Bernoulli filter is derived. Further, an approximate multi-target NIS (AMNIS) is proposed which facilitates easier interpretation of the results. The MGNIS and the AMNIS are compared to the well-known optimal subpattern assignment (OSPA) metric using simulated data with different clutter rates.
δ-广义标记多重伯努利滤波器的发散检测器
在单目标跟踪中,像归一化创新平方(NIS)这样的发散检测器被用来检测假设的运动或测量模型是否偏离被跟踪目标或传感器的实际行为太多。将发散检测器推广到基于随机有限集的多目标跟踪算法中是可能的,从而形成了多目标广义NIS (MGNIS)。在此贡献中,导出了δ-广义标记多伯努利滤波器的MGNIS。在此基础上,提出了一种近似的多目标NIS (AMNIS)方法,便于对结果的解释。利用具有不同杂波率的模拟数据,将MGNIS和AMNIS与众所周知的最优子模式分配(OSPA)度量进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信