Policy Transition of Reinforcement Learning for an Agent Based SCM System

Gang Zhao, R. Sun
{"title":"Policy Transition of Reinforcement Learning for an Agent Based SCM System","authors":"Gang Zhao, R. Sun","doi":"10.1109/INDIN.2006.275663","DOIUrl":null,"url":null,"abstract":"Reinforcement learning (RL) is successfully applied to some dynamical and unpredictable domains. The Supply Chain Management (SCM) is NP-hard problem. Some proposed RL methods perform better than traditional tools for dynamic problem solving in SCM. It realizes on-line learning and performs efficiently in some applications, but RL agent reacts worse than some heuristic methods to sudden changes in SCM demand since the trial-and-error characteristic of RL is time-consuming in practice. By surveying an efficient policy transition mechanism in RL about how to mapping existing policies in the previous task to a new policies in a changed task, this paper proposes a novel RL agent based SCM system that decreases learning time of the RL agent to a dynamic environment. As the result, the RL agent derives the maximal profit using RL technique as jobs coming with a stable distribution. Further, the RL agent makes the optimal procurement satisfying the requirement of sudden changes in the supply chain network by the policy transition mechanism.","PeriodicalId":120426,"journal":{"name":"2006 4th IEEE International Conference on Industrial Informatics","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 4th IEEE International Conference on Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2006.275663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Reinforcement learning (RL) is successfully applied to some dynamical and unpredictable domains. The Supply Chain Management (SCM) is NP-hard problem. Some proposed RL methods perform better than traditional tools for dynamic problem solving in SCM. It realizes on-line learning and performs efficiently in some applications, but RL agent reacts worse than some heuristic methods to sudden changes in SCM demand since the trial-and-error characteristic of RL is time-consuming in practice. By surveying an efficient policy transition mechanism in RL about how to mapping existing policies in the previous task to a new policies in a changed task, this paper proposes a novel RL agent based SCM system that decreases learning time of the RL agent to a dynamic environment. As the result, the RL agent derives the maximal profit using RL technique as jobs coming with a stable distribution. Further, the RL agent makes the optimal procurement satisfying the requirement of sudden changes in the supply chain network by the policy transition mechanism.
基于Agent的SCM系统强化学习的策略转换
强化学习(RL)成功地应用于一些动态和不可预测的领域。供应链管理是一个np难题。在供应链管理的动态问题求解中,一些强化学习方法的性能优于传统工具。它实现了在线学习,在某些应用中表现得很好,但由于强化学习的试错特性在实践中耗时,它对SCM需求的突然变化的反应比一些启发式方法要差。通过研究强化学习中有效的策略转换机制,即如何将前一个任务中的现有策略映射到变化任务中的新策略,本文提出了一种新的基于强化学习代理的SCM系统,该系统减少了强化学习代理对动态环境的学习时间。结果表明,RL代理将RL技术作为具有稳定分布的工作来获取最大的利润。再进一步,RL agent通过政策转移机制实现满足供应链网络突变需求的最优采购。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信