Value-at-Risk Estimation Using an Interpolated Distribution of Financial Returns Series

Saeed Shaker-Akhtekhane, Solmaz Poorabbas
{"title":"Value-at-Risk Estimation Using an Interpolated Distribution of Financial Returns Series","authors":"Saeed Shaker-Akhtekhane, Solmaz Poorabbas","doi":"10.47260/jafb/1316","DOIUrl":null,"url":null,"abstract":"Abstract\n\nThis paper develops a model for estimating Value-at-Risk (VaR) from the historical return series. The proposed method uses spline interpolation to represent the empirical probability distribution of the return series. The approach developed in this paper is easy to implement using available programming platforms, and it can be generalized to other applications that involve estimating empirical distribution. In order to check the validity of the model, we use established back-testing methods and show that the model is robust to the changes in sample size and significance levels used to estimate VaR. We test the model against some similar distribution-based models using historical data from S&P500 index. We show that Value-at-Risk estimation based on the proposed method can outperform common historical, parametric, and kernel-based methods. As a result, the method can be useful in the context of validation of market risk models.\n\nJEL classification numbers: C52, C63, G17, G32.\nKeywords: Value-at-Risk, Non-parametric estimation, Empirical distribution, Spline Interpolation.","PeriodicalId":330012,"journal":{"name":"Journal of Applied Finance & Banking","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Finance & Banking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47260/jafb/1316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper develops a model for estimating Value-at-Risk (VaR) from the historical return series. The proposed method uses spline interpolation to represent the empirical probability distribution of the return series. The approach developed in this paper is easy to implement using available programming platforms, and it can be generalized to other applications that involve estimating empirical distribution. In order to check the validity of the model, we use established back-testing methods and show that the model is robust to the changes in sample size and significance levels used to estimate VaR. We test the model against some similar distribution-based models using historical data from S&P500 index. We show that Value-at-Risk estimation based on the proposed method can outperform common historical, parametric, and kernel-based methods. As a result, the method can be useful in the context of validation of market risk models. JEL classification numbers: C52, C63, G17, G32. Keywords: Value-at-Risk, Non-parametric estimation, Empirical distribution, Spline Interpolation.
利用财务收益序列的插值分布估算风险价值
摘要本文建立了一个从历史收益序列估计风险价值(VaR)的模型。该方法采用样条插值表示回归序列的经验概率分布。本文开发的方法易于使用现有的编程平台实现,并且可以推广到涉及估计经验分布的其他应用。为了检验模型的有效性,我们使用了既定的回验方法,并表明该模型对用于估计VaR的样本量和显著性水平的变化具有鲁棒性。我们使用标准普尔500指数的历史数据对一些类似的基于分布的模型进行了测试。我们表明,基于所提方法的风险价值估计优于常见的历史、参数和基于核的方法。因此,该方法可用于市场风险模型的验证。JEL分类号:C52、C63、G17、G32。关键词:风险值,非参数估计,经验分布,样条插值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信