Min Yu, Ru Huang, Xiaokang Shil, Huihui Jil, Xing Zhang, Yangyuan Wang, H. Oka
{"title":"Studying shallow junction technology by atomistic modeling","authors":"Min Yu, Ru Huang, Xiaokang Shil, Huihui Jil, Xing Zhang, Yangyuan Wang, H. Oka","doi":"10.1109/IWJT.2004.1306861","DOIUrl":null,"url":null,"abstract":"Atomistic modeling has been applied in studying and simulating the advanced junction technologies. We present in this paper the application of molecular dynamics method in simulation of low energy ion implantation and that of kinetic Monte Carlo method in simulation of enhanced diffusion in annealing. The dose dependent ultra-low energy implantation is well simulated. The simulation indicates that energy contamination is not as serious as it looks. The dissipation of Si extended defects are simulated for both 40 keV and 5 keV Si implantation cases. Enhanced diffusion is simulated.","PeriodicalId":342825,"journal":{"name":"The Fourth International Workshop on Junction Technology, 2004. IWJT '04.","volume":"2005 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Fourth International Workshop on Junction Technology, 2004. IWJT '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWJT.2004.1306861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Atomistic modeling has been applied in studying and simulating the advanced junction technologies. We present in this paper the application of molecular dynamics method in simulation of low energy ion implantation and that of kinetic Monte Carlo method in simulation of enhanced diffusion in annealing. The dose dependent ultra-low energy implantation is well simulated. The simulation indicates that energy contamination is not as serious as it looks. The dissipation of Si extended defects are simulated for both 40 keV and 5 keV Si implantation cases. Enhanced diffusion is simulated.