A Brief Analysis of U-Net and Mask R-CNN for Skin Lesion Segmentation

Erick Alfaro, Ximena Bolaños Fonseca, E. M. Albornoz, Cesar E. Martínez, S. C. Ramírez
{"title":"A Brief Analysis of U-Net and Mask R-CNN for Skin Lesion Segmentation","authors":"Erick Alfaro, Ximena Bolaños Fonseca, E. M. Albornoz, Cesar E. Martínez, S. C. Ramírez","doi":"10.1109/IWOBI47054.2019.9114436","DOIUrl":null,"url":null,"abstract":"A brief analysis on the use of two deep neural architectures, the U-Net and Mask R-CNN for the segmentation of skin lesions in dermoscopic images is presented. The two systems were adapted to use the dataset provided by the International Skin Imaging Collaboration (ISIC) for its 2017 challenge and different experiments were carried out. Results showed that the Mask-R-CNN obtained better performance than U-Net, also with lower computation times, being a feasible architecture to further analysis and application also to skin lesion classification.","PeriodicalId":427695,"journal":{"name":"2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI47054.2019.9114436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

A brief analysis on the use of two deep neural architectures, the U-Net and Mask R-CNN for the segmentation of skin lesions in dermoscopic images is presented. The two systems were adapted to use the dataset provided by the International Skin Imaging Collaboration (ISIC) for its 2017 challenge and different experiments were carried out. Results showed that the Mask-R-CNN obtained better performance than U-Net, also with lower computation times, being a feasible architecture to further analysis and application also to skin lesion classification.
浅析U-Net和Mask R-CNN在皮肤损伤分割中的应用
简要分析了使用两种深度神经结构,即U-Net和Mask R-CNN对皮肤镜图像中的皮肤病变进行分割。这两个系统被调整为使用国际皮肤成像协作组织(ISIC)提供的数据集,以应对其2017年的挑战,并进行了不同的实验。结果表明,Mask-R-CNN的性能优于U-Net,计算次数也更少,是进一步分析和应用于皮肤病变分类的可行架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信