Effective classification of radiographic medical images using LS-SVM and NSCT based retrieval system

M. Chowdhury, S. Das, M. Kundu
{"title":"Effective classification of radiographic medical images using LS-SVM and NSCT based retrieval system","authors":"M. Chowdhury, S. Das, M. Kundu","doi":"10.1109/CODEC.2012.6509345","DOIUrl":null,"url":null,"abstract":"This paper presents a Content Based Medical Image Retrieval (CBMIR) system for diverse collection of radiographic images. Non-Subsampled Contourlet Transform (NSCT) and Fuzzy C-Means (FCM) technique is used to construct the image signature which is used as the image representative feature vector. Least Square-Support Vector Machine (LS-SVM) and Earth Mover's Distance (EMD) is used to classify the images. Preliminary studies on a radiographic image Database (DB) consisting 1550 images of 31 different modalities show promising result.","PeriodicalId":399616,"journal":{"name":"2012 5th International Conference on Computers and Devices for Communication (CODEC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 5th International Conference on Computers and Devices for Communication (CODEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODEC.2012.6509345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a Content Based Medical Image Retrieval (CBMIR) system for diverse collection of radiographic images. Non-Subsampled Contourlet Transform (NSCT) and Fuzzy C-Means (FCM) technique is used to construct the image signature which is used as the image representative feature vector. Least Square-Support Vector Machine (LS-SVM) and Earth Mover's Distance (EMD) is used to classify the images. Preliminary studies on a radiographic image Database (DB) consisting 1550 images of 31 different modalities show promising result.
基于LS-SVM和NSCT检索系统的放射医学图像有效分类
提出了一种基于内容的医学图像检索(CBMIR)系统。采用非下采样轮廓波变换(NSCT)和模糊c均值(FCM)技术构建图像签名,作为图像的代表性特征向量。采用最小二乘支持向量机(LS-SVM)和地球移动距离(EMD)对图像进行分类。对包含31种不同模式的1550张图像的放射图像数据库(DB)的初步研究显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信