Parallelization of spectrum sensing algorithms using graphic processing units

Chu-Han Lee, Chia-Jen Chang, Sao-Jie Chen
{"title":"Parallelization of spectrum sensing algorithms using graphic processing units","authors":"Chu-Han Lee, Chia-Jen Chang, Sao-Jie Chen","doi":"10.1109/CSQRWC.2012.6294962","DOIUrl":null,"url":null,"abstract":"Cognitive radio (CR) is the next-generation communication system with high spectrum utilization and efficiency. It is very crucial for CR to sense the environment spectrum holes quickly and accurately. In this paper, we implement two kinds of spectrum sensing algorithms: waveform-based detection and cyclostationary feature extraction methods. Both of these algorithms are capable to separate the signal of interest from the noise or interference. In order to lower the computation time required by these complex algorithms, we parallelize these algorithms on a Graphic Processing Unit (GPU). Our methods show up to an average of 30× speedup in waveform preamble detection and an average of 39× speedup in cyclostationary feature extraction on a NVIDIA GTS 450 compared with the sequential implementation on a 2.94GHz Intel Core 2 CPU.","PeriodicalId":250360,"journal":{"name":"CSQRWC 2012","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSQRWC 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSQRWC.2012.6294962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Cognitive radio (CR) is the next-generation communication system with high spectrum utilization and efficiency. It is very crucial for CR to sense the environment spectrum holes quickly and accurately. In this paper, we implement two kinds of spectrum sensing algorithms: waveform-based detection and cyclostationary feature extraction methods. Both of these algorithms are capable to separate the signal of interest from the noise or interference. In order to lower the computation time required by these complex algorithms, we parallelize these algorithms on a Graphic Processing Unit (GPU). Our methods show up to an average of 30× speedup in waveform preamble detection and an average of 39× speedup in cyclostationary feature extraction on a NVIDIA GTS 450 compared with the sequential implementation on a 2.94GHz Intel Core 2 CPU.
使用图形处理单元的频谱感知算法的并行化
认知无线电(CR)是一种频谱利用率高、效率高的下一代通信系统。快速、准确地感知环境光谱空洞对红外光谱检测至关重要。在本文中,我们实现了两种频谱感知算法:基于波形的检测和循环平稳特征提取方法。这两种算法都能够从噪声或干扰中分离出感兴趣的信号。为了降低这些复杂算法所需的计算时间,我们在图形处理单元(GPU)上并行化这些算法。与在2.94GHz英特尔酷睿2 CPU上的顺序实现相比,我们的方法在NVIDIA GTS 450上的波形前导检测平均加速了30倍,在循环平稳特征提取中平均加速了39倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信