Geostatistics-inspired sparsity-aware cooperative spectrum sensing for cognitive radio networks

E. Dall’Anese
{"title":"Geostatistics-inspired sparsity-aware cooperative spectrum sensing for cognitive radio networks","authors":"E. Dall’Anese","doi":"10.1145/1755743.1755789","DOIUrl":null,"url":null,"abstract":"A cognitive radio (CR) sensing problem is considered, where a number of CRs collaboratively detect the activity of an incumbent primary system. The proposed sensing framework is based on the novel concept of channel gain map, a geostatistics-inspired tool that allows to capture the spatiotemporal evolution of the propagation environment. The channel gain maps are updated by opportunistically reuse the primary channel idle periods. Also, the RF-power map, generated by the active sources, is tracked for spectrum spatial re-use and CR transmit power calibration purposes.","PeriodicalId":198518,"journal":{"name":"International Workshop on Mobile Opportunistic Networks","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Mobile Opportunistic Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1755743.1755789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A cognitive radio (CR) sensing problem is considered, where a number of CRs collaboratively detect the activity of an incumbent primary system. The proposed sensing framework is based on the novel concept of channel gain map, a geostatistics-inspired tool that allows to capture the spatiotemporal evolution of the propagation environment. The channel gain maps are updated by opportunistically reuse the primary channel idle periods. Also, the RF-power map, generated by the active sources, is tracked for spectrum spatial re-use and CR transmit power calibration purposes.
认知无线电网络中地理统计启发的稀疏感知协同频谱感知
考虑了一个认知无线电(CR)感知问题,其中许多CR协作检测在位主系统的活动。提出的传感框架基于信道增益图的新概念,信道增益图是一种受地质统计学启发的工具,可以捕捉传播环境的时空演变。通道增益映射通过机会重用主通道空闲期来更新。此外,跟踪由有源产生的rf功率图,以实现频谱空间重用和CR发射功率校准目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信