Algorithm and architecture for a multiple-field context-driven search engine using fully-parallel clustered associative memories

Hooman Jarollahi, N. Onizawa, Vincent Gripon, T. Hanyu, W. Gross
{"title":"Algorithm and architecture for a multiple-field context-driven search engine using fully-parallel clustered associative memories","authors":"Hooman Jarollahi, N. Onizawa, Vincent Gripon, T. Hanyu, W. Gross","doi":"10.1109/SiPS.2014.6986075","DOIUrl":null,"url":null,"abstract":"In this paper, a context-driven search engine is presented based on a new family of associative memories. It stores only the associations between items from multiple search fields in the form of binary links, and merges repeated field items to reduce the memory requirements. It achieves 13.6× reduction in memory bits and accesses, and 8.6× reduced number of clock cycles in search operation compared to a classical field-based search structure using content-addressable memory. Furthermore, using parallel computational nodes in the proposed search engine, it achieves five orders of magnitude reduced number of clock cycles compared to a CPU-based counterpart running a classical search algorithm in software.","PeriodicalId":167156,"journal":{"name":"2014 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2014.6986075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a context-driven search engine is presented based on a new family of associative memories. It stores only the associations between items from multiple search fields in the form of binary links, and merges repeated field items to reduce the memory requirements. It achieves 13.6× reduction in memory bits and accesses, and 8.6× reduced number of clock cycles in search operation compared to a classical field-based search structure using content-addressable memory. Furthermore, using parallel computational nodes in the proposed search engine, it achieves five orders of magnitude reduced number of clock cycles compared to a CPU-based counterpart running a classical search algorithm in software.
基于全并行集群联想记忆的多域上下文驱动搜索引擎的算法和体系结构
本文提出了一种基于一类新的联想记忆的上下文驱动搜索引擎。它仅以二进制链接的形式存储来自多个搜索字段的项之间的关联,并合并重复的字段项以减少内存需求。与使用内容可寻址内存的经典基于字段的搜索结构相比,它在内存位和访问方面减少了13.6倍,在搜索操作中减少了8.6倍的时钟周期。此外,在所提出的搜索引擎中使用并行计算节点,与在软件中运行基于cpu的经典搜索算法相比,它实现了五个数量级的时钟周期减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信