{"title":"Using unified power format standard concepts for power-aware design and verification of systems-onchip at transaction level","authors":"Ons Mbarek, A. Pegatoquet, M. Auguin","doi":"10.1049/iet-cds.2011.0352","DOIUrl":null,"url":null,"abstract":"Building efficient and correct system power-management strategies relies on efficient power architecture decision making as well as respecting structural dependencies induced by such architecture. Transaction level modelling allows a rapid exploration, verification and evaluation of alternative power-management architectures and strategies. This study introduces an efficient methodology for making system power decisions at transaction level (TL) by adding and verifying power intent and management capabilities into TL models. A generic framework that abstracts relevant concepts of the IEEE 1801 unified power format standard and implements assertion-based contracts is used throughout the methodology. A TL-model example is considered to validate the methodology.","PeriodicalId":120076,"journal":{"name":"IET Circuits Devices Syst.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Circuits Devices Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-cds.2011.0352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Building efficient and correct system power-management strategies relies on efficient power architecture decision making as well as respecting structural dependencies induced by such architecture. Transaction level modelling allows a rapid exploration, verification and evaluation of alternative power-management architectures and strategies. This study introduces an efficient methodology for making system power decisions at transaction level (TL) by adding and verifying power intent and management capabilities into TL models. A generic framework that abstracts relevant concepts of the IEEE 1801 unified power format standard and implements assertion-based contracts is used throughout the methodology. A TL-model example is considered to validate the methodology.