Blind Separation Methods for Image Show-through Problem

Xiaowei Zhang, Jianming Lu, T. Yahagi
{"title":"Blind Separation Methods for Image Show-through Problem","authors":"Xiaowei Zhang, Jianming Lu, T. Yahagi","doi":"10.1109/ITAB.2007.4407395","DOIUrl":null,"url":null,"abstract":"This paper studies a image show-through problem. It happens often when we copy or scan a paper document, in which the image from the back page shows through. The images obtained on both side of the paper can be considered as mixture components, which are nonlinear mixtures of original images. In this study, we propose to use self-organizing map (SOM) and fastICA to implement separation of the image mixtures. SOM is neural network-based technique using unsupervised learning and can provide useful data representations. The separation results show that the two blind separation methods are applicable to the problem.","PeriodicalId":129874,"journal":{"name":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","volume":"84 2-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITAB.2007.4407395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper studies a image show-through problem. It happens often when we copy or scan a paper document, in which the image from the back page shows through. The images obtained on both side of the paper can be considered as mixture components, which are nonlinear mixtures of original images. In this study, we propose to use self-organizing map (SOM) and fastICA to implement separation of the image mixtures. SOM is neural network-based technique using unsupervised learning and can provide useful data representations. The separation results show that the two blind separation methods are applicable to the problem.
图像透显问题的盲分离方法
本文研究了一个图像透显问题。当我们复制或扫描一份纸质文件时,这种情况经常发生,其中最后一页的图像会显示出来。在纸的两面得到的图像可以看作是混合分量,是原始图像的非线性混合。在这项研究中,我们提出使用自组织映射(SOM)和fastICA来实现图像混合的分离。SOM是一种基于神经网络的无监督学习技术,可以提供有用的数据表示。分离结果表明,两种盲分离方法均适用于该问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信