Сильное решение и задачи оптимального управления для класса линейных уравнений дробного порядка

Марина Васильевна Плеханова, Marina Vasil'evna Plekhanova
{"title":"Сильное решение и задачи оптимального управления для класса линейных уравнений дробного порядка","authors":"Марина Васильевна Плеханова, Marina Vasil'evna Plekhanova","doi":"10.36535/0233-6723-2019-167-42-51","DOIUrl":null,"url":null,"abstract":"Исследована однозначная разрешимость в смысле сильных решений задачи Коши для линейного неоднородного уравнения в банаховом пространстве, разрешeнного относительно дробной производной Капуто. Предполагается, что оператор при искомой функции в правой части уравнения порождает аналитическое разрешающее семейство операторов для соответствующего однородного уравнения. Получен вид сильного решения исследуемой задачи Коши. Исследована разрешимость задач оптимального управления с выпуклым, полунепрерывным снизу, ограниченным снизу, коэрцитивным функционалом для рассмотренного уравнения. Общие результаты использованы для доказательства существования оптимального управления в задачах с конкретными функционалами. Абстрактные результаты для системы управления, описываемой уравнением в банаховом пространстве, проиллюстрированы на примерах задач оптимального управления для уравнения дробного порядка по времени, частными случаями которого являются уравнение субдиффузии и диффузионно-волновое уравнение.","PeriodicalId":283651,"journal":{"name":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36535/0233-6723-2019-167-42-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Исследована однозначная разрешимость в смысле сильных решений задачи Коши для линейного неоднородного уравнения в банаховом пространстве, разрешeнного относительно дробной производной Капуто. Предполагается, что оператор при искомой функции в правой части уравнения порождает аналитическое разрешающее семейство операторов для соответствующего однородного уравнения. Получен вид сильного решения исследуемой задачи Коши. Исследована разрешимость задач оптимального управления с выпуклым, полунепрерывным снизу, ограниченным снизу, коэрцитивным функционалом для рассмотренного уравнения. Общие результаты использованы для доказательства существования оптимального управления в задачах с конкретными функционалами. Абстрактные результаты для системы управления, описываемой уравнением в банаховом пространстве, проиллюстрированы на примерах задач оптимального управления для уравнения дробного порядка по времени, частными случаями которого являются уравнение субдиффузии и диффузионно-волновое уравнение.
在卡普托分数导数允许的巴纳霍空间中,从高解问题的强解的意义上看,这是一个明显的解。据推测,在方程的右半部分中,函数操作员为对应的均匀方程生成解析解析解析集。柯西正在研究的问题有一个强有力的解决方案。研究最佳管理问题的可解性,下半连续,下半连续,通量方程的可解性。一般结果被用来证明在具有特定功能的任务中存在最佳管理。巴纳赫空间方程所描述的控制系统的抽象结果说明了分段顺序方程的最佳控制问题的例子,其中一些例子是次扩散方程和扩散波方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信