{"title":"A Conjecture Congenetic with Fermat’s Last Theorem","authors":"Jun-Sheng Duan, Ji-Lian Wang","doi":"10.15377/2409-5761.2022.09.9","DOIUrl":null,"url":null,"abstract":"We propose the conjecture that for any positive integers r and n with n > 2, there do not exist 2r + 1 consecutive positive integers in natural order such that the sum of n-th powers of the first r + 1 integers equals the sum of n-th powers of the subsequent r integers, i.e., there are no positive integers r, m and n, where r < m and n > 2, satisfying (m – r)n + (m – r + 1)n + … + mn = (m + 1)n + (m + 2)n + … + (m + r)n. We prove that the conjecture is true for the cases n = 3 and n = 4. We also verified by using Mathematica that the conjecture is true for the cases 3 < n < 10 and m < 5000.","PeriodicalId":335387,"journal":{"name":"Journal of Advances in Applied & Computational Mathematics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Applied & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15377/2409-5761.2022.09.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose the conjecture that for any positive integers r and n with n > 2, there do not exist 2r + 1 consecutive positive integers in natural order such that the sum of n-th powers of the first r + 1 integers equals the sum of n-th powers of the subsequent r integers, i.e., there are no positive integers r, m and n, where r < m and n > 2, satisfying (m – r)n + (m – r + 1)n + … + mn = (m + 1)n + (m + 2)n + … + (m + r)n. We prove that the conjecture is true for the cases n = 3 and n = 4. We also verified by using Mathematica that the conjecture is true for the cases 3 < n < 10 and m < 5000.