Flying Hydraulically Amplified Electrostatic Gripper System for Aerial Object Manipulation

Dario Tscholl, Stephan-Daniel Gravert, Aurel X. Appius, Robert K. Katzschmann
{"title":"Flying Hydraulically Amplified Electrostatic Gripper System for Aerial Object Manipulation","authors":"Dario Tscholl, Stephan-Daniel Gravert, Aurel X. Appius, Robert K. Katzschmann","doi":"10.48550/arXiv.2205.13011","DOIUrl":null,"url":null,"abstract":"Rapid and versatile object manipulation in air is an open challenge. An energy-efficient and adaptive soft gripper combined with an agile aerial vehicle could revolutionize aerial robotic manipulation in areas such as warehousing. This paper presents a bio-inspired gripper powered by hydraulically amplified electrostatic actuators mounted to a quadcopter that can interact safely and naturally with its environment. Our gripping concept is motivated by an eagle's foot. Our custom multi-actuator concept is inspired by a scorpion tail design (consisting of a base electrode with pouches stacked adjacently) and spider-inspired joints (classic pouch motors with a flexible hinge layer). A hybrid of these two designs realizes a higher force output under moderate deflections of up to 25{\\deg} compared to single-hinge concepts. In addition, sandwiching the hinge layer improves the robustness of the gripper. For the first time, we show that soft manipulation in air is possible using electrostatic actuation. This study demonstrates the potential of untethered hydraulically amplified actuators in aerial robotic manipulation. Our proof of concept opens up the use of hydraulic electrostatic actuators in mobile aerial systems.","PeriodicalId":136210,"journal":{"name":"International Symposium of Robotics Research","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.13011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Rapid and versatile object manipulation in air is an open challenge. An energy-efficient and adaptive soft gripper combined with an agile aerial vehicle could revolutionize aerial robotic manipulation in areas such as warehousing. This paper presents a bio-inspired gripper powered by hydraulically amplified electrostatic actuators mounted to a quadcopter that can interact safely and naturally with its environment. Our gripping concept is motivated by an eagle's foot. Our custom multi-actuator concept is inspired by a scorpion tail design (consisting of a base electrode with pouches stacked adjacently) and spider-inspired joints (classic pouch motors with a flexible hinge layer). A hybrid of these two designs realizes a higher force output under moderate deflections of up to 25{\deg} compared to single-hinge concepts. In addition, sandwiching the hinge layer improves the robustness of the gripper. For the first time, we show that soft manipulation in air is possible using electrostatic actuation. This study demonstrates the potential of untethered hydraulically amplified actuators in aerial robotic manipulation. Our proof of concept opens up the use of hydraulic electrostatic actuators in mobile aerial systems.
用于空中物体操纵的飞行液压放大静电抓手系统
快速和多用途的空中物体操纵是一个公开的挑战。一种节能、自适应的软抓手与灵活的飞行器相结合,可能会给仓储等领域的空中机器人操作带来革命性的变化。本文介绍了一种由液压放大静电致动器驱动的仿生抓手,该抓手安装在四轴飞行器上,可以安全自然地与环境相互作用。我们的抓握概念来源于鹰脚。我们定制的多致动器概念的灵感来自蝎尾设计(由一个基本电极和相邻堆叠的小袋组成)和蜘蛛式关节(带有柔性铰链层的经典小袋电机)。与单铰链概念相比,这两种设计的混合在高达25°的适度偏转下实现了更高的力输出。此外,夹心铰链层提高了夹持器的鲁棒性。我们首次展示了使用静电驱动在空气中进行软操作是可能的。这项研究证明了无系绳液压放大驱动器在空中机器人操作中的潜力。我们的概念证明开辟了在移动空中系统中使用液压静电致动器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信