{"title":"Wet etching of gold on graphene for high-quality resist-free graphene surfaces","authors":"J. Kunc, M. Shestopalov, J. Jo, Kibog Park","doi":"10.1088/2632-959X/acef45","DOIUrl":null,"url":null,"abstract":"Wet etching of gold on graphene is challenging due to the weak adhesion of the resist mask to graphene. We report an operating procedure for alkali ion-free wet etching of gold on graphene using a mixture of hydrochloric and nitric acids (aqua regia) with a high lateral resolution down to 100 nm. We investigate the role of positive and negative resists, electron beam lithography (EBL) dose, hard-bake, oxygen etching, aging, and sensitivity to the etch parameters, such as the freshness of dilute aqua regia, etch time, and the order of etched samples. The negative-tone resist provides the best results. The over-dosed EBL exposure can enhance the resist adhesion, as hard-bake below the glass-transition temperature and well-defined wet etch of the resist-residua-free gold surface. We also present a cleaning procedure to avoid bubble formation after the hard bake. Our results demonstrate that wet etching of gold on graphene using aqua regia is a viable method for achieving high-quality resist-free graphene surfaces. This method has potential applications in graphene nanoelectronics and nanophotonics, where high-quality graphene surfaces are essential for device performance.","PeriodicalId":118165,"journal":{"name":"Nano Express","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959X/acef45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wet etching of gold on graphene is challenging due to the weak adhesion of the resist mask to graphene. We report an operating procedure for alkali ion-free wet etching of gold on graphene using a mixture of hydrochloric and nitric acids (aqua regia) with a high lateral resolution down to 100 nm. We investigate the role of positive and negative resists, electron beam lithography (EBL) dose, hard-bake, oxygen etching, aging, and sensitivity to the etch parameters, such as the freshness of dilute aqua regia, etch time, and the order of etched samples. The negative-tone resist provides the best results. The over-dosed EBL exposure can enhance the resist adhesion, as hard-bake below the glass-transition temperature and well-defined wet etch of the resist-residua-free gold surface. We also present a cleaning procedure to avoid bubble formation after the hard bake. Our results demonstrate that wet etching of gold on graphene using aqua regia is a viable method for achieving high-quality resist-free graphene surfaces. This method has potential applications in graphene nanoelectronics and nanophotonics, where high-quality graphene surfaces are essential for device performance.