Sub-modeling Finite Element Analysis of 3D printed structures

J. Zarbakhsh, A. Iravani, Zeinab Amin-Akhlaghi
{"title":"Sub-modeling Finite Element Analysis of 3D printed structures","authors":"J. Zarbakhsh, A. Iravani, Zeinab Amin-Akhlaghi","doi":"10.1109/EUROSIME.2015.7103095","DOIUrl":null,"url":null,"abstract":"For the first time, nested sub-modeling approach and Finite Element Analysis have been used to analyze the structural mechanical of 3D Printed part, whereas the details of 3D printing patterns included in sub-model. The results present a general tool which can improve the quality of 3D printed parts, which have multidisciplinary application in various fields. It is found that the Maximum Principle stress is highly concentrated at 3D printed layers. For a specific 3D printing pattern, the stress intensity factor has been calculated to have the value of 4. Results have been discussed from theoretical, simulation and experimental observation point of view.","PeriodicalId":250897,"journal":{"name":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2015.7103095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

For the first time, nested sub-modeling approach and Finite Element Analysis have been used to analyze the structural mechanical of 3D Printed part, whereas the details of 3D printing patterns included in sub-model. The results present a general tool which can improve the quality of 3D printed parts, which have multidisciplinary application in various fields. It is found that the Maximum Principle stress is highly concentrated at 3D printed layers. For a specific 3D printing pattern, the stress intensity factor has been calculated to have the value of 4. Results have been discussed from theoretical, simulation and experimental observation point of view.
3D打印结构子建模有限元分析
首次采用嵌套子建模方法和有限元分析方法对3D打印零件的结构力学进行分析,将3D打印图案的细节包含在子模型中。研究结果提供了一种提高3D打印零件质量的通用工具,在各个领域具有多学科应用。发现最大主应力高度集中在3D打印层。对于特定的3D打印图案,应力强度因子的计算值为4。从理论、模拟和实验观察的角度对结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信