High-radix SRT division with speculation of quotient digits

T. Pan, Hyon S. Kay, Y. Chun, C. Wey
{"title":"High-radix SRT division with speculation of quotient digits","authors":"T. Pan, Hyon S. Kay, Y. Chun, C. Wey","doi":"10.1109/ICCD.1995.528911","DOIUrl":null,"url":null,"abstract":"The complexity of quotient-digit selection process can be reduced significantly by using a look-up table, referred to as quotient-digit selection table (QST). However, the huge table size limits such approach for small-radix implementation. This paper presents an alternative quotient decision process to reduce the table size. Instead of finding the exact quotient digit, a speculated quotient digit is estimated. The speculated quotient digit is used to update the possible partial remainders while the speculated quotient digit is corrected. The process includes two steps: determination of speculated quotient digit and quotient-digit correction. Thus instead of using a huge QST table, two smaller tables are employed. Result shows that the proposed approach significantly reduces the size of the original QST.","PeriodicalId":281907,"journal":{"name":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICCD '95 International Conference on Computer Design. VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1995.528911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The complexity of quotient-digit selection process can be reduced significantly by using a look-up table, referred to as quotient-digit selection table (QST). However, the huge table size limits such approach for small-radix implementation. This paper presents an alternative quotient decision process to reduce the table size. Instead of finding the exact quotient digit, a speculated quotient digit is estimated. The speculated quotient digit is used to update the possible partial remainders while the speculated quotient digit is corrected. The process includes two steps: determination of speculated quotient digit and quotient-digit correction. Thus instead of using a huge QST table, two smaller tables are employed. Result shows that the proposed approach significantly reduces the size of the original QST.
高基数SRT除法与商数的推测
使用商数选择表(QST)可以显著降低商数选择过程的复杂性。然而,巨大的表大小限制了这种方法的小基数实现。本文提出了一种替代的商决策过程来减小表的大小。不是找到确切的商数,而是估计一个推测的商数。在对推测的商位进行修正时,使用推测的商位来更新可能的部分余数。该过程包括两个步骤:推测商数的确定和商数校正。因此,不使用一个巨大的QST表,而是使用两个较小的表。结果表明,该方法显著减小了原始QST的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信