{"title":"LQR and PID Control Design for a Pneumatic Diaphragm Valve","authors":"G. Conte, F. Marques, Claudio Garcia","doi":"10.1109/ICAACCA51523.2021.9465250","DOIUrl":null,"url":null,"abstract":"This work demonstrates the design and compares the performance of two different digital control techniques for a modeled pneumatic diaphragm valve. The valve model is derived using first-principles modeling, the Karnopp friction model and approximates the I/P converter dynamics with a first order filter. The digital PID and LQR controllers were chosen to compensate the valve friction. A proposed contribution is to implement a digital LQR control using the Bryson rule and the Pincer technique to tune the matrices Q and R based on requirements response, maximum deviation of states variables and control effort. The robustness of the LQR controller compared to the PID controller is presented in this paper.","PeriodicalId":328922,"journal":{"name":"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAACCA51523.2021.9465250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work demonstrates the design and compares the performance of two different digital control techniques for a modeled pneumatic diaphragm valve. The valve model is derived using first-principles modeling, the Karnopp friction model and approximates the I/P converter dynamics with a first order filter. The digital PID and LQR controllers were chosen to compensate the valve friction. A proposed contribution is to implement a digital LQR control using the Bryson rule and the Pincer technique to tune the matrices Q and R based on requirements response, maximum deviation of states variables and control effort. The robustness of the LQR controller compared to the PID controller is presented in this paper.