Linear and Non-linear Decomposition of Index Generation Functions

T. Mazurkiewicz, T. Luba
{"title":"Linear and Non-linear Decomposition of Index Generation Functions","authors":"T. Mazurkiewicz, T. Luba","doi":"10.23919/MIXDES.2019.8787031","DOIUrl":null,"url":null,"abstract":"Minimization of index generation functions attracts increasing interest lately. Methods proposed in the literature focus mainly on linear decomposition using XOR gates. In this paper we propose an algorithm using discernibility sets. We prove that it minimize standard benchmark functions as efficiently as the best-known algorithms. However, linear transformations seem to be insufficient for some functions. Therefore, we propose a novel approach to the minimization of index generation functions that uses non-linear transformations, i.e. AND gates. We provide examples showing that this technique can further reduce the number of input variables.","PeriodicalId":309822,"journal":{"name":"2019 MIXDES - 26th International Conference \"Mixed Design of Integrated Circuits and Systems\"","volume":"95 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 MIXDES - 26th International Conference \"Mixed Design of Integrated Circuits and Systems\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIXDES.2019.8787031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Minimization of index generation functions attracts increasing interest lately. Methods proposed in the literature focus mainly on linear decomposition using XOR gates. In this paper we propose an algorithm using discernibility sets. We prove that it minimize standard benchmark functions as efficiently as the best-known algorithms. However, linear transformations seem to be insufficient for some functions. Therefore, we propose a novel approach to the minimization of index generation functions that uses non-linear transformations, i.e. AND gates. We provide examples showing that this technique can further reduce the number of input variables.
指标生成函数的线性与非线性分解
索引生成函数的最小化近来引起了越来越多的关注。文献中提出的方法主要集中在使用异或门的线性分解。本文提出了一种利用差别集的算法。我们证明了它与最著名的算法一样有效地最小化标准基准函数。然而,对于某些函数,线性变换似乎是不够的。因此,我们提出了一种使用非线性变换(即与门)来最小化索引生成函数的新方法。我们提供的例子表明,这种技术可以进一步减少输入变量的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信