Automatic Classification of C-SAM Voids for Root Cause Identification of Bonding Yield Degradation

J. Baderot, Solange Garrais, S. Martínez, J. Foucher, R. Eto, K. Tanida, Takatoshi Yasui, Tomoya Tanaka
{"title":"Automatic Classification of C-SAM Voids for Root Cause Identification of Bonding Yield Degradation","authors":"J. Baderot, Solange Garrais, S. Martínez, J. Foucher, R. Eto, K. Tanida, Takatoshi Yasui, Tomoya Tanaka","doi":"10.1109/ISSM55802.2022.10027076","DOIUrl":null,"url":null,"abstract":"Wafer-level direct bonding technology is a key process for the production of backside illuminated (BSI) CMOS image sensor (CIS). Usually, constant-depth mode scanning acoustic microscope (C-SAM) 300mm wafer images are acquired and defect size distribution is provided to monitor defects that degrade bonding yield. Current solutions are not providing information detailed enough to identify the root cause of this degradation. In this paper, we propose a rule-based method for the classification of the defects and automatic segmentation of the defects to extract precise measurements depending on the type of defect. All these information will allow to reduce the time to analyze the images and improve the precision and consistency of the analysis.","PeriodicalId":130513,"journal":{"name":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","volume":"289 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Semiconductor Manufacturing (ISSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSM55802.2022.10027076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Wafer-level direct bonding technology is a key process for the production of backside illuminated (BSI) CMOS image sensor (CIS). Usually, constant-depth mode scanning acoustic microscope (C-SAM) 300mm wafer images are acquired and defect size distribution is provided to monitor defects that degrade bonding yield. Current solutions are not providing information detailed enough to identify the root cause of this degradation. In this paper, we propose a rule-based method for the classification of the defects and automatic segmentation of the defects to extract precise measurements depending on the type of defect. All these information will allow to reduce the time to analyze the images and improve the precision and consistency of the analysis.
基于C-SAM空洞的键合成品率退化根本原因自动分类
晶圆级直接键合技术是生产背照式CMOS图像传感器的关键工艺。通常采用恒深模式扫描声显微镜(C-SAM) 300mm晶圆图像并提供缺陷尺寸分布来监测降低键合成品率的缺陷。当前的解决方案没有提供足够详细的信息来确定这种退化的根本原因。在本文中,我们提出了一种基于规则的缺陷分类和缺陷自动分割方法,以根据缺陷的类型提取精确的测量值。所有这些信息都可以减少分析图像的时间,提高分析的精度和一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信