{"title":"Dynamic Partitioned Global Address Spaces for power efficient DRAM virtualization","authors":"Jeffrey S. Young, S. Yalamanchili","doi":"10.1109/GREENCOMP.2010.5598278","DOIUrl":null,"url":null,"abstract":"Dynamic Partitioned Global Address Spaces (DPGAS) is an abstraction that allows for quick and efficient remapping of physical memory addresses within a global address space, enabling more efficient sharing of remote DRAM. While past work has proposed several uses for DPGAS [1], the most pressing issue in today's data centers is reducing power. This work uses a detailed simulation infrastructure to study the effects of using DPGAS to reduce overall data center power through low-latency accesses to “virtual” DIMMs. Virtual DIMMs are remote DIMMs that can be mapped into a local node's address space using existing operating system abstractions and low-level hardware support to abstract the DIMM's location from the application using it. By using a simple spill-receive memory allocation model, we show that DPGAS can reduce memory power from 18% to 49% with a hardware latency of 1 to 2 µs in typical usage scenarios. Additionally, we demonstrate the range of scenarios where DPGAS can be realized over a shared 10 Gbps Ethernet link with normal network traffic.","PeriodicalId":262148,"journal":{"name":"International Conference on Green Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Green Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENCOMP.2010.5598278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Dynamic Partitioned Global Address Spaces (DPGAS) is an abstraction that allows for quick and efficient remapping of physical memory addresses within a global address space, enabling more efficient sharing of remote DRAM. While past work has proposed several uses for DPGAS [1], the most pressing issue in today's data centers is reducing power. This work uses a detailed simulation infrastructure to study the effects of using DPGAS to reduce overall data center power through low-latency accesses to “virtual” DIMMs. Virtual DIMMs are remote DIMMs that can be mapped into a local node's address space using existing operating system abstractions and low-level hardware support to abstract the DIMM's location from the application using it. By using a simple spill-receive memory allocation model, we show that DPGAS can reduce memory power from 18% to 49% with a hardware latency of 1 to 2 µs in typical usage scenarios. Additionally, we demonstrate the range of scenarios where DPGAS can be realized over a shared 10 Gbps Ethernet link with normal network traffic.