A 3mm2 Programmable Bayesian Inference Accelerator for Unsupervised Machine Perception using Parallel Gibbs Sampling in 16nm

Glenn G. Ko, Yuji Chai, M. Donato, P. Whatmough, Thierry Tambe, Rob A. Rutenbar, D. Brooks, Gu-Yeon Wei
{"title":"A 3mm2 Programmable Bayesian Inference Accelerator for Unsupervised Machine Perception using Parallel Gibbs Sampling in 16nm","authors":"Glenn G. Ko, Yuji Chai, M. Donato, P. Whatmough, Thierry Tambe, Rob A. Rutenbar, D. Brooks, Gu-Yeon Wei","doi":"10.1109/vlsicircuits18222.2020.9162784","DOIUrl":null,"url":null,"abstract":"This paper describes a 16nm programmable accelerator for unsupervised probabilistic machine perception tasks that performs Bayesian inference on probabilistic models mapped onto a 2D Markov Random Field, using MCMC. Exploiting two degrees of parallelism, it performs Gibbs sampling inference at up to 1380× faster with 1965× less energy than an Arm Cortex-A53 on the same SoC, and 1.5× faster with 6.3× less energy than an embedded FPGA in the same technology. At 0.8V, it runs at 450MHz, producing 44.6 MSamples/s at 0.88 nJ/sample.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vlsicircuits18222.2020.9162784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes a 16nm programmable accelerator for unsupervised probabilistic machine perception tasks that performs Bayesian inference on probabilistic models mapped onto a 2D Markov Random Field, using MCMC. Exploiting two degrees of parallelism, it performs Gibbs sampling inference at up to 1380× faster with 1965× less energy than an Arm Cortex-A53 on the same SoC, and 1.5× faster with 6.3× less energy than an embedded FPGA in the same technology. At 0.8V, it runs at 450MHz, producing 44.6 MSamples/s at 0.88 nJ/sample.
一个3mm2的可编程贝叶斯推理加速器,用于无监督机器感知,使用并行吉布斯采样在16nm
本文描述了一个用于无监督概率机器感知任务的16nm可编程加速器,该加速器使用MCMC对映射到二维马尔可夫随机场的概率模型执行贝叶斯推理。利用两个度的并行性,它执行吉布斯采样推理的速度比相同SoC上的Arm Cortex-A53快1380倍,能量少1965倍,比相同技术的嵌入式FPGA快1.5倍,能量少6.3倍。在0.8V时,它运行在450MHz,在0.88 nJ/sample时产生44.6 MSamples/s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信