Glenn G. Ko, Yuji Chai, M. Donato, P. Whatmough, Thierry Tambe, Rob A. Rutenbar, D. Brooks, Gu-Yeon Wei
{"title":"A 3mm2 Programmable Bayesian Inference Accelerator for Unsupervised Machine Perception using Parallel Gibbs Sampling in 16nm","authors":"Glenn G. Ko, Yuji Chai, M. Donato, P. Whatmough, Thierry Tambe, Rob A. Rutenbar, D. Brooks, Gu-Yeon Wei","doi":"10.1109/vlsicircuits18222.2020.9162784","DOIUrl":null,"url":null,"abstract":"This paper describes a 16nm programmable accelerator for unsupervised probabilistic machine perception tasks that performs Bayesian inference on probabilistic models mapped onto a 2D Markov Random Field, using MCMC. Exploiting two degrees of parallelism, it performs Gibbs sampling inference at up to 1380× faster with 1965× less energy than an Arm Cortex-A53 on the same SoC, and 1.5× faster with 6.3× less energy than an embedded FPGA in the same technology. At 0.8V, it runs at 450MHz, producing 44.6 MSamples/s at 0.88 nJ/sample.","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vlsicircuits18222.2020.9162784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper describes a 16nm programmable accelerator for unsupervised probabilistic machine perception tasks that performs Bayesian inference on probabilistic models mapped onto a 2D Markov Random Field, using MCMC. Exploiting two degrees of parallelism, it performs Gibbs sampling inference at up to 1380× faster with 1965× less energy than an Arm Cortex-A53 on the same SoC, and 1.5× faster with 6.3× less energy than an embedded FPGA in the same technology. At 0.8V, it runs at 450MHz, producing 44.6 MSamples/s at 0.88 nJ/sample.