Gene modification identification under flux capacity uncertainty

Mona Yousofshahi, M. Orshansky, Kyongbum Lee, S. Hassoun
{"title":"Gene modification identification under flux capacity uncertainty","authors":"Mona Yousofshahi, M. Orshansky, Kyongbum Lee, S. Hassoun","doi":"10.1145/2463209.2488789","DOIUrl":null,"url":null,"abstract":"Re-engineering cellular behavior promises to advance the production of commercially significant biomolecules and to enhance cellular function for many applications. To achieve a desired cellular objective, it is necessary to identify within a metabolic network a set of reactions whose fluxes should be changed using gene modifications. We develop a computational method, CCOpt, to optimize the selection of an intervention set that consists of gene up/down-regulation using uncertainty-aware chance-constrained optimization. In contrast to deterministic approaches where constraints are met with 100% certainty, constraints in CCOpt are probabilistically met at a user-specified confidence level. We investigate the application of CCOpt to two case studies that utilize the Chinese Hamster Ovary (CHO) cell metabolism. Our results demonstrate that CCOpt is capable of identifying optimal intervention sets without the run-time cost of a sampling based (Monte Carlo) approach.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Re-engineering cellular behavior promises to advance the production of commercially significant biomolecules and to enhance cellular function for many applications. To achieve a desired cellular objective, it is necessary to identify within a metabolic network a set of reactions whose fluxes should be changed using gene modifications. We develop a computational method, CCOpt, to optimize the selection of an intervention set that consists of gene up/down-regulation using uncertainty-aware chance-constrained optimization. In contrast to deterministic approaches where constraints are met with 100% certainty, constraints in CCOpt are probabilistically met at a user-specified confidence level. We investigate the application of CCOpt to two case studies that utilize the Chinese Hamster Ovary (CHO) cell metabolism. Our results demonstrate that CCOpt is capable of identifying optimal intervention sets without the run-time cost of a sampling based (Monte Carlo) approach.
通量不确定条件下的基因修饰鉴定
重组细胞行为有望促进商业上重要的生物分子的生产,并在许多应用中增强细胞功能。为了达到期望的细胞目标,有必要在代谢网络中确定一组反应,这些反应的通量应该通过基因修饰来改变。我们开发了一种计算方法CCOpt,利用不确定性感知的机会约束优化来优化由基因上调/下调组成的干预集的选择。与100%确定地满足约束的确定性方法相反,CCOpt中的约束在用户指定的置信水平上概率地满足。我们研究了CCOpt在两个利用中国仓鼠卵巢(CHO)细胞代谢的案例研究中的应用。我们的研究结果表明,CCOpt能够识别最优的干预集,而不需要基于采样(蒙特卡罗)方法的运行时间成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信