R. Akchurin, V. Zhegalin, T. Sakharova, S. Seregin
{"title":"Epitaxial structures based on narrow band-gap InAs1-x-ySbxBiy solid solutions","authors":"R. Akchurin, V. Zhegalin, T. Sakharova, S. Seregin","doi":"10.1117/12.280459","DOIUrl":null,"url":null,"abstract":"The technique of InAs1-x-ySbxBiy/InSb heterostructures forming by LPE was developed to obtain semiconductor material with intrinsic absorption edge (gamma) > 8 micrometers at 77K. Smooth epilayers with x equals 0.88-0.97 and y equals 0.0016-0.0036 were grown on InSb(111)A substrates in 380 450 degrees C temperature range. Eg(77K) values, obtained from optical absorption spectra measurements, were found to decrease by 0.017-0.020 eV as compared to InAs1-xSbx with the same x. The possibilities of InAs1-x-ySbxBiy/InSb strained multilayer heterostructures as semiconductor material for long- wavelength applications have been analyzed. Results of our calculation demonstrate that the strain-induced energy band- gap shift in such structures enables the attainment of 0.07- 0.15 eV Eg values at 77K for 0.82 < x < 0.94 composition range. The obtaining of strained multilayer heterostructures with layer thickness 1-x-ySbxBiy/InSb1-yBiy/InSb multilayer heterostructures with epilayer thicknesses from 0.05 to 0.2 micrometers depending on growth conditions can be successfully obtained by LPE.","PeriodicalId":276773,"journal":{"name":"Material Science and Material Properties for Infrared Optics","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science and Material Properties for Infrared Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.280459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The technique of InAs1-x-ySbxBiy/InSb heterostructures forming by LPE was developed to obtain semiconductor material with intrinsic absorption edge (gamma) > 8 micrometers at 77K. Smooth epilayers with x equals 0.88-0.97 and y equals 0.0016-0.0036 were grown on InSb(111)A substrates in 380 450 degrees C temperature range. Eg(77K) values, obtained from optical absorption spectra measurements, were found to decrease by 0.017-0.020 eV as compared to InAs1-xSbx with the same x. The possibilities of InAs1-x-ySbxBiy/InSb strained multilayer heterostructures as semiconductor material for long- wavelength applications have been analyzed. Results of our calculation demonstrate that the strain-induced energy band- gap shift in such structures enables the attainment of 0.07- 0.15 eV Eg values at 77K for 0.82 < x < 0.94 composition range. The obtaining of strained multilayer heterostructures with layer thickness 1-x-ySbxBiy/InSb1-yBiy/InSb multilayer heterostructures with epilayer thicknesses from 0.05 to 0.2 micrometers depending on growth conditions can be successfully obtained by LPE.