Huaiguang Jiang, Y. Zhang, J. Zhang, E. Muljadi, D. Gao
{"title":"Synchrophasor based auxiliary controller to enhance power system transient voltage stability in a high penetration renewable energy scenario","authors":"Huaiguang Jiang, Y. Zhang, J. Zhang, E. Muljadi, D. Gao","doi":"10.1109/PEMWA.2014.6912217","DOIUrl":null,"url":null,"abstract":"An auxiliary coordinated control approach focusing on transient voltage stability is proposed in this paper. The concept is based on support vector machine (SVM) classifier and multiple-input and multiple-output (MIMO) model predictive control (MPC) on the high penetration renewable power system. To achieve the objective, the voltage stability condition of the power system is predicted by the SVM classifier first, using measured synchrophasor data in the power system. Next, the control strategy is triggered by the prediction results. The designed auxiliary MPC strategy will augment the existing control variables aiming to keep transient voltage stability. To validate the proposed approach, the Kundur two-area power system with a wind plant is built and the numerical results demonstrate the feasibility, effectiveness and accuracy of the proposed method.","PeriodicalId":370712,"journal":{"name":"2014 IEEE Symposium on Power Electronics and Machines for Wind and Water Applications","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Power Electronics and Machines for Wind and Water Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEMWA.2014.6912217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
An auxiliary coordinated control approach focusing on transient voltage stability is proposed in this paper. The concept is based on support vector machine (SVM) classifier and multiple-input and multiple-output (MIMO) model predictive control (MPC) on the high penetration renewable power system. To achieve the objective, the voltage stability condition of the power system is predicted by the SVM classifier first, using measured synchrophasor data in the power system. Next, the control strategy is triggered by the prediction results. The designed auxiliary MPC strategy will augment the existing control variables aiming to keep transient voltage stability. To validate the proposed approach, the Kundur two-area power system with a wind plant is built and the numerical results demonstrate the feasibility, effectiveness and accuracy of the proposed method.