{"title":"Multi-Bernoulli filtering for keypoint-based visual tracking","authors":"D. Kim","doi":"10.1109/ICCAIS.2016.7822432","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a single object visual tracking problem using multi-object filtering technique. We represent object appearance as a multi-object distribution of keypoints. Hidden positions of keypoints are observed by using SURF feature detectors and multi-Bernoulli filtering is used for tracking of keypoints. Unlike other feature matching based object trackers, multi-Bernoulli filtering based tracker is free from combinatorial matching problem. The estimated number of keypoints can be used as a quality measure to determine track re-initialization when it is necessary. Experimental results show that multi-object filtering can be one of effective solutions for single object visual tracking.","PeriodicalId":407031,"journal":{"name":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2016.7822432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we consider a single object visual tracking problem using multi-object filtering technique. We represent object appearance as a multi-object distribution of keypoints. Hidden positions of keypoints are observed by using SURF feature detectors and multi-Bernoulli filtering is used for tracking of keypoints. Unlike other feature matching based object trackers, multi-Bernoulli filtering based tracker is free from combinatorial matching problem. The estimated number of keypoints can be used as a quality measure to determine track re-initialization when it is necessary. Experimental results show that multi-object filtering can be one of effective solutions for single object visual tracking.