An artificial immune system approach to news article recommendation

B. Mihaljević, I. Cavrak, M. Žagar
{"title":"An artificial immune system approach to news article recommendation","authors":"B. Mihaljević, I. Cavrak, M. Žagar","doi":"10.1109/ITI.2005.1491158","DOIUrl":null,"url":null,"abstract":"Artificial immune systems are solution finding techniques often used for classification and recommendation problems. Danger theory is one of new context dependant response theories of how an artificial immune system responds to pathogens. News articles recommendation systems solve problems of presenting articles with interesting topics to user honoring evolving user preferences and past choices. This paper describes how artificial immune system with Danger theory can be utilized for news articles recommendation on Web portals or similar media presenter systems and presents algorithm and method for handling user preferences and article features in recommender system.","PeriodicalId":392003,"journal":{"name":"27th International Conference on Information Technology Interfaces, 2005.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"27th International Conference on Information Technology Interfaces, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITI.2005.1491158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Artificial immune systems are solution finding techniques often used for classification and recommendation problems. Danger theory is one of new context dependant response theories of how an artificial immune system responds to pathogens. News articles recommendation systems solve problems of presenting articles with interesting topics to user honoring evolving user preferences and past choices. This paper describes how artificial immune system with Danger theory can be utilized for news articles recommendation on Web portals or similar media presenter systems and presents algorithm and method for handling user preferences and article features in recommender system.
基于人工免疫系统的新闻文章推荐
人工免疫系统是一种解决方案寻找技术,通常用于分类和推荐问题。危险理论是研究人工免疫系统如何对病原体作出反应的一种新的环境依赖反应理论。新闻文章推荐系统解决了向用户呈现具有有趣主题的文章的问题,尊重用户不断变化的偏好和过去的选择。本文描述了基于Danger理论的人工免疫系统如何应用于门户网站或类似的媒体呈现系统的新闻文章推荐,并提出了在推荐系统中处理用户偏好和文章特征的算法和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信