Solving pencil problem generalized using Cholesky like-decomposition for skew-Hamiltonian matrix

M. Bassour
{"title":"Solving pencil problem generalized using Cholesky like-decomposition for skew-Hamiltonian matrix","authors":"M. Bassour","doi":"10.1109/ICOA49421.2020.9094500","DOIUrl":null,"url":null,"abstract":"We present in this paper a new method for solving skew-Hamiltonian/Hamiltonian generalized eigenvalue problem. The theoretical and practical aspects are treated. The skew-Hamiltonian/Hamiltonian pencil is converted to a standard Hamiltonian eigenproblem using Cholesky like-decomposition for skew-Hamiltonian matrix. This approach is more efficient as there is no need of calculation the reverse of a skew-Hamiltonian matrix. Numerical examples are given to show the effectiveness of the proposed method.","PeriodicalId":253361,"journal":{"name":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA49421.2020.9094500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present in this paper a new method for solving skew-Hamiltonian/Hamiltonian generalized eigenvalue problem. The theoretical and practical aspects are treated. The skew-Hamiltonian/Hamiltonian pencil is converted to a standard Hamiltonian eigenproblem using Cholesky like-decomposition for skew-Hamiltonian matrix. This approach is more efficient as there is no need of calculation the reverse of a skew-Hamiltonian matrix. Numerical examples are given to show the effectiveness of the proposed method.
用类Cholesky分解解斜哈密顿矩阵的铅笔问题
本文给出了一种求解偏哈密顿/哈密顿广义特征值问题的新方法。从理论和实践两个方面进行了论述。利用斜哈密顿矩阵的Cholesky类分解将斜哈密顿/哈密顿铅笔转换为标准哈密顿特征问题。这种方法更有效,因为不需要计算偏哈密顿矩阵的逆。数值算例表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信