Prediction of NOx emissions throughflame radical imaging and neural network based soft computing

Xinli Li, Duo Sun, G. Lu, J. Krabicka, Yong Yan
{"title":"Prediction of NOx emissions throughflame radical imaging and neural network based soft computing","authors":"Xinli Li, Duo Sun, G. Lu, J. Krabicka, Yong Yan","doi":"10.1109/IST.2012.6295594","DOIUrl":null,"url":null,"abstract":"The characteristics of reacting radicals in a flame are crucial for an in-depth understanding of the formation process of combustion emissions. This paper presents an algorithm for the prediction of NOx (NO and NO2) emissions in flue gas through flame radical imaging, flame temperature monitoring and application of Neural Network techniques. Radiation images of flame radicals OH*, CN*, CH* and C2* are captured using an intensified multi-wavelength imaging system. Flame temperature is determined using a spectrometer and two-color pyrometry. Based on these images, the characteristic values of the flame radicals are extracted. These characteristic values, together with the flame temperature, are then used to predict NOx emissions. Experimental results from a laboratory-scale gas-fired combustion rig have shown the effectiveness of the proposed method for the prediction of NOx emissions.","PeriodicalId":213330,"journal":{"name":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Imaging Systems and Techniques Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2012.6295594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The characteristics of reacting radicals in a flame are crucial for an in-depth understanding of the formation process of combustion emissions. This paper presents an algorithm for the prediction of NOx (NO and NO2) emissions in flue gas through flame radical imaging, flame temperature monitoring and application of Neural Network techniques. Radiation images of flame radicals OH*, CN*, CH* and C2* are captured using an intensified multi-wavelength imaging system. Flame temperature is determined using a spectrometer and two-color pyrometry. Based on these images, the characteristic values of the flame radicals are extracted. These characteristic values, together with the flame temperature, are then used to predict NOx emissions. Experimental results from a laboratory-scale gas-fired combustion rig have shown the effectiveness of the proposed method for the prediction of NOx emissions.
基于火焰自由基成像和神经网络软计算的NOx排放预测
火焰中反应自由基的特性对于深入了解燃烧排放物的形成过程至关重要。本文提出了一种基于火焰自由基成像、火焰温度监测和神经网络技术的烟气NOx (NO和NO2)排放预测算法。利用增强多波长成像系统捕获了OH*、CN*、CH*和C2*等火焰自由基的辐射图像。火焰温度是用光谱仪和双色热分析法测定的。在此基础上提取火焰自由基的特征值。这些特征值与火焰温度一起用于预测NOx排放。实验室规模的燃气燃烧装置的实验结果表明,所提出的方法对于预测NOx排放是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信