PHYSICS OF MOSFET NANOTRANSISTORS: FUNDAMENTAL LIMITS AND RESTRICTIONS

Y. Kruglyak, M. Strikha
{"title":"PHYSICS OF MOSFET NANOTRANSISTORS: FUNDAMENTAL LIMITS AND RESTRICTIONS","authors":"Y. Kruglyak, M. Strikha","doi":"10.18524/1815-7459.2021.3.241052","DOIUrl":null,"url":null,"abstract":"In the last one from the series of the tutorial review articles, devoted to physics of modern nanotransistors and aimed to serve reseachers, ingeneers, students and teachers in the universities, it is demonstrated that the existence of the minimal energy for recording of 1 bite of information leads to fundamental restriction on minimal MOSFET channel length and on minimal time of transistor swithching. The obtained simple estimation Lmin = 1.2 nm (for room temperature) is somewhat lower, than in reality, and it looks like that Si FETs with a channel shorter than 2.5–3 nm would newer be fabricated. This correlates with the results of numerical modeling of electron transport through the channel, which demonstrate that for short channels the greater part of current passes by tunneling below the barrier top, and the transistor loses its functionality, because the current in source-drain circuit is no longer governed by gate voltage.","PeriodicalId":367487,"journal":{"name":"Sensor Electronics and Microsystem Technologies","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Electronics and Microsystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18524/1815-7459.2021.3.241052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the last one from the series of the tutorial review articles, devoted to physics of modern nanotransistors and aimed to serve reseachers, ingeneers, students and teachers in the universities, it is demonstrated that the existence of the minimal energy for recording of 1 bite of information leads to fundamental restriction on minimal MOSFET channel length and on minimal time of transistor swithching. The obtained simple estimation Lmin = 1.2 nm (for room temperature) is somewhat lower, than in reality, and it looks like that Si FETs with a channel shorter than 2.5–3 nm would newer be fabricated. This correlates with the results of numerical modeling of electron transport through the channel, which demonstrate that for short channels the greater part of current passes by tunneling below the barrier top, and the transistor loses its functionality, because the current in source-drain circuit is no longer governed by gate voltage.
大多数场效应晶体管的物理学:基本限制和限制
在系列教程回顾文章的最后一篇中,致力于现代纳米晶体管的物理学,旨在为研究人员,工程师,学生和大学教师服务,它证明了记录1比特信息的最小能量的存在导致了最小MOSFET通道长度和晶体管开关的最小时间的基本限制。得到的简单估计Lmin = 1.2 nm(室温)比实际情况要低一些,看起来通道短于2.5 - 3nm的Si fet将被制造出来。这与通过通道的电子传输的数值模拟结果相关联,该结果表明,对于短通道,大部分电流通过势垒顶部以下的隧道通过,晶体管失去其功能,因为源漏电路中的电流不再受栅极电压控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信