Iterative interference alignment in macrocell-femtocell networks: A cognitive radio approach

M. Rihan, M. Elsabrouty, O. Muta, Hiroshi Fumkawa
{"title":"Iterative interference alignment in macrocell-femtocell networks: A cognitive radio approach","authors":"M. Rihan, M. Elsabrouty, O. Muta, Hiroshi Fumkawa","doi":"10.1109/ISWCS.2014.6933435","DOIUrl":null,"url":null,"abstract":"The deployment of femtocells in current and future communication systems promises an effective solution for limited indoor coverage problem and a possible gateway for mobile data offloading. In this paper, we cast a cognitive interference alignment approach (IA) suitable for heterogeneous cellular networks with a mixed macrocell and femtocell deployment Specifically, in our approach a restricted waterfilling (RWF) algorithm is used to maximize the downlink data rate, while reserving some eigenmodes for giving the femtocell basestations the opportunity to do their transmissions even at high signal-to-noise power ratio (SNR) for the macrocell basestation. Additionally, both the cross-tier and co-tier interference is to be aligned at each femtocell user's receiver using an Iterative Reweighted Least Squares(IRLS) algorithm. The simulation results show that the proposed IA approach provides an improved sum rate for the femtocell users, compared to the conventional IA techniques, like, the leakage minimization approach and the nuclear norm based rank constraint rank minimization approach.","PeriodicalId":431852,"journal":{"name":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2014.6933435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The deployment of femtocells in current and future communication systems promises an effective solution for limited indoor coverage problem and a possible gateway for mobile data offloading. In this paper, we cast a cognitive interference alignment approach (IA) suitable for heterogeneous cellular networks with a mixed macrocell and femtocell deployment Specifically, in our approach a restricted waterfilling (RWF) algorithm is used to maximize the downlink data rate, while reserving some eigenmodes for giving the femtocell basestations the opportunity to do their transmissions even at high signal-to-noise power ratio (SNR) for the macrocell basestation. Additionally, both the cross-tier and co-tier interference is to be aligned at each femtocell user's receiver using an Iterative Reweighted Least Squares(IRLS) algorithm. The simulation results show that the proposed IA approach provides an improved sum rate for the femtocell users, compared to the conventional IA techniques, like, the leakage minimization approach and the nuclear norm based rank constraint rank minimization approach.
大蜂窝-飞蜂窝网络中的迭代干扰对准:一种认知无线电方法
在当前和未来的通信系统中部署飞蜂窝有望有效解决有限的室内覆盖问题,并可能成为移动数据卸载的网关。在本文中,我们提出了一种适用于大型蜂窝和移动蜂窝混合部署的异构蜂窝网络的认知干扰定位方法(IA)。具体来说,在我们的方法中,使用了一种限制充水(RWF)算法来最大化下行数据速率,同时保留了一些特征模式,使大型蜂窝基站即使在高信噪比(SNR)下也有机会进行传输。此外,交叉层和协层干扰都将使用迭代加权最小二乘(IRLS)算法在每个femtocell用户的接收器上对齐。仿真结果表明,与泄漏最小化方法和基于核范数的秩约束秩最小化方法等传统的秩约束最小化方法相比,所提出的秩约束最小化方法为飞基站用户提供了更高的和速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信