Characterization of resistive switching memory devices with tunnel barrier

Sungjun Kim, Min-Hwi Kim, Tae-Hyeon Kim, Suhyun Bang, Dong Keun Lee, Yao‐Feng Chang, Byung-Gook Park
{"title":"Characterization of resistive switching memory devices with tunnel barrier","authors":"Sungjun Kim, Min-Hwi Kim, Tae-Hyeon Kim, Suhyun Bang, Dong Keun Lee, Yao‐Feng Chang, Byung-Gook Park","doi":"10.23919/SNW.2017.8242310","DOIUrl":null,"url":null,"abstract":"In this work, we study the resistive switching characteristics of two different resistive switching memory devices (SiN<inf>x</inf> and HfO<inf>x</inf>) with SiO<inf>2</inf> tunnel barrier. The switching of the former and the latter is based on the movement of hydrogen ion and oxygen vacancies, respectively. For Cu/SiN<inf>x</inf>/SiO<inf>2</inf>/p<sup>+</sup>-Si device, the operating current is drastically reduced and nonlinearity of LRS is increased compared to without the devices without tunnel barrier. These experiment results demonstrate that the two-types RRAM devices having tunnel barrier is highly suitable for the low-power and high-density memory applications.","PeriodicalId":424135,"journal":{"name":"2017 Silicon Nanoelectronics Workshop (SNW)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2017.8242310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the resistive switching characteristics of two different resistive switching memory devices (SiNx and HfOx) with SiO2 tunnel barrier. The switching of the former and the latter is based on the movement of hydrogen ion and oxygen vacancies, respectively. For Cu/SiNx/SiO2/p+-Si device, the operating current is drastically reduced and nonlinearity of LRS is increased compared to without the devices without tunnel barrier. These experiment results demonstrate that the two-types RRAM devices having tunnel barrier is highly suitable for the low-power and high-density memory applications.
具有隧道势垒的阻性开关存储器件的特性
在这项工作中,我们研究了两种不同的阻性开关存储器件(SiNx和HfOx)具有SiO2隧道势垒的阻性开关特性。前者和后者的切换分别基于氢离子和氧空位的运动。对于Cu/SiNx/SiO2/p+-Si器件,与没有隧道势垒的器件相比,工作电流大大降低,LRS的非线性增加。实验结果表明,具有隧道势垒的两种RRAM器件非常适合低功耗和高密度存储应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信