{"title":"140 GHz Energy-Efficient OOK Receiver using Self-Mixer-Based Power Detector in 65nm CMOS","authors":"N. Khanh, D. Yamazaki, T. Iizuka","doi":"10.1109/ICICDT56182.2022.9933075","DOIUrl":null,"url":null,"abstract":"This paper presents an integrated 140 GHz receiver in 65 nm CMOS including a power detector for high-bandwidth and power-efficient communication and radar applications. The mm-wave power detector utilizes a self-mixer scheme by the use of an NMOS transistor fed to a simple RC low-pass filter. Measured result shows that it can operate in a wide-band frequency range of 134–158 GHz and the proposed receiver occupies a small core area of 220 µm×220 µm. To realize the demodulated waveform and bit error rate (BER) measurements, we fabricated a prototype including an OOK modulator followed by the proposed receiver in a 65 nm CMOS process. The prototype successfully demonstrates a demodulated waveform and BER test at 11 Gb/s with a carrier frequency of 140 GHz. The measured BER is 2.1 × 10−4 at 11 Gb/s and less than 1 × 10−11, which is a limit of the BERT, at 8 Gb/s or less. Our OOK transceiver prototype can achieve low power, high isolation, and small die area with more design freedom and suitable for mm-wave D-band communication or radar systems.","PeriodicalId":311289,"journal":{"name":"2022 International Conference on IC Design and Technology (ICICDT)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on IC Design and Technology (ICICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT56182.2022.9933075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an integrated 140 GHz receiver in 65 nm CMOS including a power detector for high-bandwidth and power-efficient communication and radar applications. The mm-wave power detector utilizes a self-mixer scheme by the use of an NMOS transistor fed to a simple RC low-pass filter. Measured result shows that it can operate in a wide-band frequency range of 134–158 GHz and the proposed receiver occupies a small core area of 220 µm×220 µm. To realize the demodulated waveform and bit error rate (BER) measurements, we fabricated a prototype including an OOK modulator followed by the proposed receiver in a 65 nm CMOS process. The prototype successfully demonstrates a demodulated waveform and BER test at 11 Gb/s with a carrier frequency of 140 GHz. The measured BER is 2.1 × 10−4 at 11 Gb/s and less than 1 × 10−11, which is a limit of the BERT, at 8 Gb/s or less. Our OOK transceiver prototype can achieve low power, high isolation, and small die area with more design freedom and suitable for mm-wave D-band communication or radar systems.