Tri-Gate Ferroelectric FET Characterization and Modelling for Online Training of Neural Networks at Room Temperature and 233K

S. De, M. Baig, Bo-Han Qiu, D. Lu, P. Sung, F. Hsueh, Yao-Jen Lee, C. Su
{"title":"Tri-Gate Ferroelectric FET Characterization and Modelling for Online Training of Neural Networks at Room Temperature and 233K","authors":"S. De, M. Baig, Bo-Han Qiu, D. Lu, P. Sung, F. Hsueh, Yao-Jen Lee, C. Su","doi":"10.1109/DRC50226.2020.9135186","DOIUrl":null,"url":null,"abstract":"This paper reports detailed analysis on switching dynamics and device variability over a wide range of temperatures for deeply scaled (40nm gate length) tri-gate ferroelectric FETs with 10nm HZO fabricated using gate first process on SOI wafers. Our experimental results manifest, 99% ferroelectric switching at room temperature and at 233K. A memory window over 5V and strong gate length dependence of memory window is observed. Highly linear and symmetric multilevel switching characteristics makes our ferroelectric FETs suitable for neuromorphic applications, as demonstrated with neural network online training simulations.","PeriodicalId":397182,"journal":{"name":"2020 Device Research Conference (DRC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Device Research Conference (DRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC50226.2020.9135186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper reports detailed analysis on switching dynamics and device variability over a wide range of temperatures for deeply scaled (40nm gate length) tri-gate ferroelectric FETs with 10nm HZO fabricated using gate first process on SOI wafers. Our experimental results manifest, 99% ferroelectric switching at room temperature and at 233K. A memory window over 5V and strong gate length dependence of memory window is observed. Highly linear and symmetric multilevel switching characteristics makes our ferroelectric FETs suitable for neuromorphic applications, as demonstrated with neural network online training simulations.
室温和233K下神经网络在线训练的三栅极铁电场效应晶体管表征和建模
本文详细分析了深度缩放(40nm栅极长度)三栅极铁电场效应管在宽温度范围内的开关动力学和器件可变性,该三栅极铁电场效应管采用栅极优先工艺在SOI晶圆上制造10nm HZO。实验结果表明,在室温和233K下,铁电开关率达到99%。观察到5V以上的记忆窗和强门长依赖性的记忆窗。高度线性和对称的多电平开关特性使我们的铁电场效应管适用于神经形态应用,正如神经网络在线训练模拟所证明的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信