Analysis and Evaluation of Thermally Annealed Pyrolytic Graphite Heat Spreader for Power Modules

E. Gurpinar, B. Ozpineci, John Preston Spires, W. Fan
{"title":"Analysis and Evaluation of Thermally Annealed Pyrolytic Graphite Heat Spreader for Power Modules","authors":"E. Gurpinar, B. Ozpineci, John Preston Spires, W. Fan","doi":"10.1109/APEC39645.2020.9124080","DOIUrl":null,"url":null,"abstract":"Next generation power modules demand increased heat extraction capability along with reduced weight and volume. In this paper, thermally annealed pyrolytic graphite (TPG) is analyzed and compared with conventional materials used in power modules for thermal management. Fundamental properties of TPG are explained and compared with commonly used materials in power module heat spreaders and substrates. The encapsulated TPG based heat spreader is manufactured and compared with bulk copper in simulation and experimental based analysis. The results show that encapsulated TPG based heat spreader achieves more than 50% reduction in thermal resistance along with 48% reduction in weight in the heat spreader layer.","PeriodicalId":171455,"journal":{"name":"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC39645.2020.9124080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Next generation power modules demand increased heat extraction capability along with reduced weight and volume. In this paper, thermally annealed pyrolytic graphite (TPG) is analyzed and compared with conventional materials used in power modules for thermal management. Fundamental properties of TPG are explained and compared with commonly used materials in power module heat spreaders and substrates. The encapsulated TPG based heat spreader is manufactured and compared with bulk copper in simulation and experimental based analysis. The results show that encapsulated TPG based heat spreader achieves more than 50% reduction in thermal resistance along with 48% reduction in weight in the heat spreader layer.
功率模块热退火热解石墨散热片的分析与评价
下一代电源模块需要提高散热能力,同时减少重量和体积。本文对热退火热解石墨(TPG)进行了分析,并与用于功率模块热管理的常规材料进行了比较。阐述了TPG的基本性能,并与功率模块散热器和衬底中常用的材料进行了比较。制作了基于TPG的封装散热片,并与本体铜进行了仿真和实验分析比较。结果表明,封装后的TPG基导热片热阻降低50%以上,导热片层重量减轻48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信