Design of a fuzzy controller using genetic algorithms employing random signal-based learning and simulated annealing

Chang-Wook Han, Jung-il Park
{"title":"Design of a fuzzy controller using genetic algorithms employing random signal-based learning and simulated annealing","authors":"Chang-Wook Han, Jung-il Park","doi":"10.1109/ISIE.2001.931655","DOIUrl":null,"url":null,"abstract":"Traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain. Hybridizing a genetic algorithm with other algorithms can produce better performance than both the genetic algorithm and the other algorithms. This paper describes the integration of the genetic algorithm into the random signal-based learning employing simulated annealing which is used as an additional genetic operator in order to get a global solution. The validity of the proposed algorithm is confirmed by applying it to two different examples. One is finding the minimum of the nonlinear function. The other is the optimization of fuzzy control rules to control balance of the inverted pendulum.","PeriodicalId":124749,"journal":{"name":"ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2001.931655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain. Hybridizing a genetic algorithm with other algorithms can produce better performance than both the genetic algorithm and the other algorithms. This paper describes the integration of the genetic algorithm into the random signal-based learning employing simulated annealing which is used as an additional genetic operator in order to get a global solution. The validity of the proposed algorithm is confirmed by applying it to two different examples. One is finding the minimum of the nonlinear function. The other is the optimization of fuzzy control rules to control balance of the inverted pendulum.
采用基于随机信号的学习和模拟退火的遗传算法设计模糊控制器
传统的遗传算法虽然具有鲁棒性,但在任何特定领域都不是最成功的优化算法。将一种遗传算法与其他算法混合使用可以获得比遗传算法和其他算法都更好的性能。本文描述了将遗传算法与基于随机信号的学习相结合,采用模拟退火作为附加的遗传算子,以获得全局解。通过两个实例验证了该算法的有效性。一是求非线性函数的最小值。二是模糊控制规则的优化控制倒立摆的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信