{"title":"Bragg Grating Fabrication in Fibers by Near-UV Light","authors":"D. Starodubov, V. Grubsky, J. Feinberg","doi":"10.1364/bgppf.1997.bme.1","DOIUrl":null,"url":null,"abstract":"The photosensitivity of germanosilicate fibers has been tied to the presence of germanium oxygen-deficient defects (GODC) [1,2]. These defects are identified by a strong absorption peak at 240 nm and a weaker absorption peak at 330 nm (Fig. 1) [3]. The microscopic model of these defects is still debated [4-7]; however, the three-level model of the defect shown in Fig. 2 nicely explains the defect’s main spectroscopic features [4]. It was thought that color center formation due to photoionization of defects by 240 nm light was the principal mechanism of index change (through the Kramers-Kronig relation) [8]. However recent tension measurements and observations of glass densification after UV exposure suggest that a structural transformation of the glass occurs [9,10].","PeriodicalId":182420,"journal":{"name":"Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/bgppf.1997.bme.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The photosensitivity of germanosilicate fibers has been tied to the presence of germanium oxygen-deficient defects (GODC) [1,2]. These defects are identified by a strong absorption peak at 240 nm and a weaker absorption peak at 330 nm (Fig. 1) [3]. The microscopic model of these defects is still debated [4-7]; however, the three-level model of the defect shown in Fig. 2 nicely explains the defect’s main spectroscopic features [4]. It was thought that color center formation due to photoionization of defects by 240 nm light was the principal mechanism of index change (through the Kramers-Kronig relation) [8]. However recent tension measurements and observations of glass densification after UV exposure suggest that a structural transformation of the glass occurs [9,10].