A Multi-accuracy-Level Approximate Memory Architecture Based on Data Significance Analysis

Yuanchang Chen, Xinghua Yang, F. Qiao, Jie Han, Qi Wei, Huazhong Yang
{"title":"A Multi-accuracy-Level Approximate Memory Architecture Based on Data Significance Analysis","authors":"Yuanchang Chen, Xinghua Yang, F. Qiao, Jie Han, Qi Wei, Huazhong Yang","doi":"10.1109/ISVLSI.2016.84","DOIUrl":null,"url":null,"abstract":"Approximate memory is a promising technology for emerging recognition, mining and vision applications. These applications require the processing of large volumes of data to achieve energy-efficiency with negligible accuracy loss. This paper proposes a multi-level approximate memory architecture based on data significance analysis. In this architecture, a memory array is divided into several separated banks with different predefined accuracy levels. A key novelty of this work is the design of a memory controller that distributes data to the memory banks according to the results of data significance analysis. When applied to a DCT (Discrete Cosine Transform) processing module, the proposed approximate memory controller can achieve over 60% power saving with onchip memory model of multiple supply voltage SRAM banks, at the cost of a marginal output PSNR (Peak Signal to Noise Ratio) degradation of 3.34 dB.","PeriodicalId":140647,"journal":{"name":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2016.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Approximate memory is a promising technology for emerging recognition, mining and vision applications. These applications require the processing of large volumes of data to achieve energy-efficiency with negligible accuracy loss. This paper proposes a multi-level approximate memory architecture based on data significance analysis. In this architecture, a memory array is divided into several separated banks with different predefined accuracy levels. A key novelty of this work is the design of a memory controller that distributes data to the memory banks according to the results of data significance analysis. When applied to a DCT (Discrete Cosine Transform) processing module, the proposed approximate memory controller can achieve over 60% power saving with onchip memory model of multiple supply voltage SRAM banks, at the cost of a marginal output PSNR (Peak Signal to Noise Ratio) degradation of 3.34 dB.
基于数据显著性分析的多精度级近似存储体系结构
近似记忆是一种很有前途的新兴识别、挖掘和视觉应用技术。这些应用需要处理大量数据,以实现能源效率,而精度损失可以忽略不计。提出了一种基于数据显著性分析的多级近似存储结构。在这种体系结构中,存储器阵列被分成几个独立的具有不同预定义精度级别的存储库。这项工作的一个关键新颖之处在于设计了一个存储控制器,该控制器根据数据显著性分析的结果将数据分配到存储库中。当应用于DCT(离散余弦变换)处理模块时,所提出的近似存储控制器可以在片上存储模型的多电源电压SRAM组上实现超过60%的功耗节省,其代价是边际输出PSNR(峰值信噪比)下降3.34 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信