{"title":"Unmanned Systems Planning and Control based on Bionic Swarm Movement : Plenary Talk","authors":"C. L. P. Chen","doi":"10.1109/SISY47553.2019.9111562","DOIUrl":null,"url":null,"abstract":"This talk presents swarm control for self-organized system with fixed and switching topologies. The generation strategy, motion control law of a novel leader-follower relation-invariable persistent formation (RIPF), which is a kind of distance-based directed formation for multi-agent systems (MASs), will be discussed. An efficient algorithm is designed to find out if a persistent formation can be generated from a rigid graph. Derived from the properties of a rigid graph, an algorithm to generate a RIPF from any initial location is presented. The communication topology is automatically generated based on RIPF. With the selected minimum agent-movement RIPF, lastly, a control law is designed to drive this initial RIPF to the desired RIPF with given distances among agents. Simulation results show the proposed generative method, control law, and downward-tree are effective to realize the desired formation.","PeriodicalId":256922,"journal":{"name":"2019 IEEE 17th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY47553.2019.9111562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This talk presents swarm control for self-organized system with fixed and switching topologies. The generation strategy, motion control law of a novel leader-follower relation-invariable persistent formation (RIPF), which is a kind of distance-based directed formation for multi-agent systems (MASs), will be discussed. An efficient algorithm is designed to find out if a persistent formation can be generated from a rigid graph. Derived from the properties of a rigid graph, an algorithm to generate a RIPF from any initial location is presented. The communication topology is automatically generated based on RIPF. With the selected minimum agent-movement RIPF, lastly, a control law is designed to drive this initial RIPF to the desired RIPF with given distances among agents. Simulation results show the proposed generative method, control law, and downward-tree are effective to realize the desired formation.