Prompt Discriminative Language Models for Domain Adaptation

K. Lu, P. Potash, Xihui Lin, Yuwen Sun, Zihan Qian, Zheng Yuan, Tristan Naumann, Tianxi Cai, Junwei Lu
{"title":"Prompt Discriminative Language Models for Domain Adaptation","authors":"K. Lu, P. Potash, Xihui Lin, Yuwen Sun, Zihan Qian, Zheng Yuan, Tristan Naumann, Tianxi Cai, Junwei Lu","doi":"10.18653/v1/2023.clinicalnlp-1.30","DOIUrl":null,"url":null,"abstract":"Prompt tuning offers an efficient approach to domain adaptation for pretrained language models, which predominantly focus on masked language modeling or generative objectives. However, the potential of discriminative language models in biomedical tasks remains underexplored.To bridge this gap, we develop BioDLM, a method tailored for biomedical domain adaptation of discriminative language models that incorporates prompt-based continual pretraining and prompt tuning for downstream tasks. BioDLM aims to maximize the potential of discriminative language models in low-resource scenarios by reformulating these tasks as span-level corruption detection, thereby enhancing performance on domain-specific tasks and improving the efficiency of continual pertaining.In this way, BioDLM provides a data-efficient domain adaptation method for discriminative language models, effectively enhancing performance on discriminative tasks within the biomedical domain.","PeriodicalId":216954,"journal":{"name":"Clinical Natural Language Processing Workshop","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Natural Language Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.clinicalnlp-1.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prompt tuning offers an efficient approach to domain adaptation for pretrained language models, which predominantly focus on masked language modeling or generative objectives. However, the potential of discriminative language models in biomedical tasks remains underexplored.To bridge this gap, we develop BioDLM, a method tailored for biomedical domain adaptation of discriminative language models that incorporates prompt-based continual pretraining and prompt tuning for downstream tasks. BioDLM aims to maximize the potential of discriminative language models in low-resource scenarios by reformulating these tasks as span-level corruption detection, thereby enhancing performance on domain-specific tasks and improving the efficiency of continual pertaining.In this way, BioDLM provides a data-efficient domain adaptation method for discriminative language models, effectively enhancing performance on discriminative tasks within the biomedical domain.
领域适应的提示判别语言模型
即时调优为预训练语言模型提供了一种有效的领域适应方法,这些模型主要关注于掩模语言建模或生成目标。然而,鉴别语言模型在生物医学任务中的潜力仍未得到充分探索。为了弥补这一差距,我们开发了BioDLM,这是一种专为生物医学领域适应判别语言模型而定制的方法,该方法结合了基于提示的持续预训练和对下游任务的快速调整。BioDLM旨在通过将这些任务重新定义为跨级损坏检测,从而最大限度地发挥低资源场景中判别语言模型的潜力,从而提高特定领域任务的性能并提高持续相关的效率。这样,BioDLM为判别语言模型提供了一种数据高效的领域自适应方法,有效地提高了生物医学领域内判别任务的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信