Adaptive Backstepping Control of a 2-DOF Helicopter

S. Schlanbusch, Jing Zhou
{"title":"Adaptive Backstepping Control of a 2-DOF Helicopter","authors":"S. Schlanbusch, Jing Zhou","doi":"10.1109/ICCMA46720.2019.8988761","DOIUrl":null,"url":null,"abstract":"This paper proposes an adaptive nonlinear controller for a 2-Degree of Freedom (DOF) helicopter. The proposed controller is designed using backstepping control technique and is used to track the pitch and yaw position references independently. A MIMO nonlinear mathematical model is derived for the 2DOF helicopter based on Euler-Lagrange equations, where the system parameters and the control coefficients are uncertain. Unlike some existing control schemes for the helicopter control, the developed controller does not require the knowledge on the system uncertain parameters. Updating laws are used to estimate the unknown parameters. It is shown that not only the global stability is guaranteed by the proposed controller, but also asymptotic tracking and transient performances are quantified as explicit functions of the design parameters. Simulations and experiments are carried out on the Quanser helicopter to validate the effectiveness, robustness and control capability of the proposed scheme.","PeriodicalId":377212,"journal":{"name":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMA46720.2019.8988761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes an adaptive nonlinear controller for a 2-Degree of Freedom (DOF) helicopter. The proposed controller is designed using backstepping control technique and is used to track the pitch and yaw position references independently. A MIMO nonlinear mathematical model is derived for the 2DOF helicopter based on Euler-Lagrange equations, where the system parameters and the control coefficients are uncertain. Unlike some existing control schemes for the helicopter control, the developed controller does not require the knowledge on the system uncertain parameters. Updating laws are used to estimate the unknown parameters. It is shown that not only the global stability is guaranteed by the proposed controller, but also asymptotic tracking and transient performances are quantified as explicit functions of the design parameters. Simulations and experiments are carried out on the Quanser helicopter to validate the effectiveness, robustness and control capability of the proposed scheme.
二自由度直升机的自适应反演控制
针对二自由度直升机,提出了一种自适应非线性控制器。该控制器采用反步控制技术设计,用于独立跟踪俯仰和偏航位置参考。针对二自由度直升机系统参数和控制系数不确定的情况,建立了基于欧拉-拉格朗日方程的多输入多输出非线性数学模型。与现有的直升机控制方案不同,所开发的控制器不需要了解系统的不确定参数。利用更新律对未知参数进行估计。结果表明,该控制器不仅保证了系统的全局稳定性,而且将系统的渐近跟踪和暂态性能量化为设计参数的显式函数。仿真和实验验证了该方案的有效性、鲁棒性和控制能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信