{"title":"What Kind of Player are You? Continuous Learning of a Player Profile for Adaptive Robot Teleoperation","authors":"Mélanie Jouaiti, K. Dautenhahn","doi":"10.1109/ICDL53763.2022.9962211","DOIUrl":null,"url":null,"abstract":"Play is important for child development and robot-assisted play is very popular in Human-Robot Interaction as it creates more engaging and realistic setups for user studies. Adaptive game-play is also an emerging research field and a good way to provide a personalized experience while adapting to individual user’s needs. In this paper, we analyze joystick data and investigate player learning during a robot navigation game. We collected joystick data from healthy adult participants playing a game with our custom robot MyJay, while participants teleoperated the robot to perform goal-directed navigation. We evaluated the performance of both novice and proficient joystick users. Based on this analysis, we propose some robot learning mechanisms to provide a personalized game experience. Our findings can help improving human-robot interaction in the context of teleoperation in general, and could be particularly impactful for children with disabilities who have problems operating off-the-shelf joysticks.","PeriodicalId":274171,"journal":{"name":"2022 IEEE International Conference on Development and Learning (ICDL)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Development and Learning (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL53763.2022.9962211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Play is important for child development and robot-assisted play is very popular in Human-Robot Interaction as it creates more engaging and realistic setups for user studies. Adaptive game-play is also an emerging research field and a good way to provide a personalized experience while adapting to individual user’s needs. In this paper, we analyze joystick data and investigate player learning during a robot navigation game. We collected joystick data from healthy adult participants playing a game with our custom robot MyJay, while participants teleoperated the robot to perform goal-directed navigation. We evaluated the performance of both novice and proficient joystick users. Based on this analysis, we propose some robot learning mechanisms to provide a personalized game experience. Our findings can help improving human-robot interaction in the context of teleoperation in general, and could be particularly impactful for children with disabilities who have problems operating off-the-shelf joysticks.