Mechanical Design of Self-Reconfiguring 4D-Printed OrigamiSats: A New Concept for Solar Sailing

Aloisia Russo, B. Robb, S. Soldini, P. Paoletti, Gilles Bailet, C. McInnes, J. Reveles, A. K. Sugihara, Stéphane Bonardi, Osamu Mori
{"title":"Mechanical Design of Self-Reconfiguring 4D-Printed OrigamiSats: A New Concept for Solar Sailing","authors":"Aloisia Russo, B. Robb, S. Soldini, P. Paoletti, Gilles Bailet, C. McInnes, J. Reveles, A. K. Sugihara, Stéphane Bonardi, Osamu Mori","doi":"10.3389/frspt.2022.876585","DOIUrl":null,"url":null,"abstract":"In this article, a self-reconfiguring OrigamiSat concept is presented. The reconfiguration of the proposed OrigamiSat is triggered by combining the effect of 4D material (i.e. origami’s edges) and changes in the local surface optical properties (i.e., origami’s facets) to harness the solar radiation pressure acceleration. The proposed OrigamiSat uses the principle of solar sailing to enhance the effect of the Sun radiation to generate momentum on the Aluminised Kapton (Al-Kapton) origami surface by transitioning from mirror-like to diffusely reflecting optical properties of each individual facet. Numerical simulations have demonstrated that local changes in the optical properties can trigger reconfiguration. A minimum of 1-m edge size facet is required for a thick-origami to generate enough forces from the Sun radiation. The thick-origami pattern is 3D-printed directly on a thin Al-Kapton film (the solar sail substrate which is highly reflective). An elastic filament (thermoplastic polyurethane TPU) showed best performance when printing directly on the Al-Kapton and the Acrylonitrile Butadiene Styrene with carbon fiber reinforcement (ABS/cc) is added to augment the origami mechanical properties. The 4D material (shape memory polymer) is integrated only at specific edges to achieve self-deployment by applying heat. Two different folding mechanisms were studied: 1) the cartilage-like, where the hinge is made combining the TPU and the 4D material which make the mounts or valleys fully stretchable, and 2) the mechanical hinge, where simple hinges are made solely of ABS/cc. Numerical simulations have demonstrated that the cartilage-like hinge is the most suitable design for light-weight reconfigurable OrigamiSat when using the solar radiation pressure acceleration. We have used build-in electric board to heat up the 4D material and trigger the folding. We envisage embedding the heat wire within the 4D hinge in the future.","PeriodicalId":137674,"journal":{"name":"Frontiers in Space Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Space Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frspt.2022.876585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, a self-reconfiguring OrigamiSat concept is presented. The reconfiguration of the proposed OrigamiSat is triggered by combining the effect of 4D material (i.e. origami’s edges) and changes in the local surface optical properties (i.e., origami’s facets) to harness the solar radiation pressure acceleration. The proposed OrigamiSat uses the principle of solar sailing to enhance the effect of the Sun radiation to generate momentum on the Aluminised Kapton (Al-Kapton) origami surface by transitioning from mirror-like to diffusely reflecting optical properties of each individual facet. Numerical simulations have demonstrated that local changes in the optical properties can trigger reconfiguration. A minimum of 1-m edge size facet is required for a thick-origami to generate enough forces from the Sun radiation. The thick-origami pattern is 3D-printed directly on a thin Al-Kapton film (the solar sail substrate which is highly reflective). An elastic filament (thermoplastic polyurethane TPU) showed best performance when printing directly on the Al-Kapton and the Acrylonitrile Butadiene Styrene with carbon fiber reinforcement (ABS/cc) is added to augment the origami mechanical properties. The 4D material (shape memory polymer) is integrated only at specific edges to achieve self-deployment by applying heat. Two different folding mechanisms were studied: 1) the cartilage-like, where the hinge is made combining the TPU and the 4D material which make the mounts or valleys fully stretchable, and 2) the mechanical hinge, where simple hinges are made solely of ABS/cc. Numerical simulations have demonstrated that the cartilage-like hinge is the most suitable design for light-weight reconfigurable OrigamiSat when using the solar radiation pressure acceleration. We have used build-in electric board to heat up the 4D material and trigger the folding. We envisage embedding the heat wire within the 4D hinge in the future.
自重构4d打印折纸卫星的机械设计:太阳能帆船的新概念
本文提出了一种自重构的OrigamiSat概念。提出的OrigamiSat的重新配置是通过结合4D材料(即折纸的边缘)的影响和局部表面光学特性(即折纸的表面)的变化来触发的,以利用太阳辐射压力加速度。拟议的OrigamiSat使用太阳航行的原理来增强太阳辐射的效果,通过从镜面到漫反射每个单独面的光学特性的过渡,在铝卡普顿折纸表面产生动量。数值模拟表明,光学性质的局部变化可以触发重构。为了从太阳辐射中产生足够的力,厚折纸需要至少1米的边缘尺寸。厚折纸图案直接3d打印在薄的Al-Kapton薄膜上(太阳帆的基材,具有高反射性)。弹性长丝(热塑性聚氨酯TPU)直接打印在Al-Kapton和添加碳纤维增强(ABS/cc)的丙烯腈-丁二烯-苯乙烯材料上表现出最佳的折纸力学性能。4D材料(形状记忆聚合物)仅在特定边缘集成,通过加热实现自我部署。研究了两种不同的折叠机制:1)软骨状,其中铰链结合TPU和4D材料,使坐垫或山谷完全可拉伸;2)机械铰链,其中简单的铰链仅由ABS/cc制成。数值模拟结果表明,在太阳辐射压力加速度作用下,软骨状铰链是最适合轻型可重构折纸卫星的设计。我们使用内置电路板加热4D材料并触发折叠。我们设想在未来将热丝嵌入4D铰链中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信