K. Nakamoto, Y. Kawato, N. Yoshida, Y. Okada, M. Hatatani, M. Mochizuki, K. Watanabe, M. Fuyama
{"title":"Perpendicular recording heads for areal densities over 100 Gb/in/sup 2/","authors":"K. Nakamoto, Y. Kawato, N. Yoshida, Y. Okada, M. Hatatani, M. Mochizuki, K. Watanabe, M. Fuyama","doi":"10.1109/NAPMRC.2003.1177063","DOIUrl":null,"url":null,"abstract":"Perpendicular recording with sufficient thermal stability has great potential for next-generation recording with areal densities over 100 Gb/in/sup 2/. One of the biggest problems for single-pole writers is head-induced erasure, such as erase-after-write This erasure is due to the high remanent magnetization of the main pole. We fabricated single-pole writers with a domain stabilization technique to reduce the remanence, and highly sensitive tunneling magnetoresistive (TMR) readers for 100 Gb/in/sup 2/ perpendicular recording.","PeriodicalId":111090,"journal":{"name":"Joint NAPMRC 2003. Digest of Technical Papers","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint NAPMRC 2003. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPMRC.2003.1177063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Perpendicular recording with sufficient thermal stability has great potential for next-generation recording with areal densities over 100 Gb/in/sup 2/. One of the biggest problems for single-pole writers is head-induced erasure, such as erase-after-write This erasure is due to the high remanent magnetization of the main pole. We fabricated single-pole writers with a domain stabilization technique to reduce the remanence, and highly sensitive tunneling magnetoresistive (TMR) readers for 100 Gb/in/sup 2/ perpendicular recording.