LEQA: Latency estimation for a quantum algorithm mapped to a quantum circuit fabric

M. Dousti, Massoud Pedram
{"title":"LEQA: Latency estimation for a quantum algorithm mapped to a quantum circuit fabric","authors":"M. Dousti, Massoud Pedram","doi":"10.1145/2463209.2488786","DOIUrl":null,"url":null,"abstract":"This paper presents LEQA, a fast latency estimation tool for evaluating the performance of a quantum algorithm mapped to a quantum fabric. The actual quantum algorithm latency can be computed by performing detailed scheduling, placement and routing of the quantum instructions and qubits in a quantum operation dependency graph on a quantum circuit fabric. This is, however, a very expensive proposition that requires large amounts of processing time. Instead, LEQA, which is based on computing the neighborhood population counts of qubits, can produce estimates of the circuit latency with good accuracy (i.e., an average of less than 3% error) with up to two orders of magnitude speedup for mid-size benchmarks. This speedup is expected to increase superlinearly as a function of circuit size (operation count).","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents LEQA, a fast latency estimation tool for evaluating the performance of a quantum algorithm mapped to a quantum fabric. The actual quantum algorithm latency can be computed by performing detailed scheduling, placement and routing of the quantum instructions and qubits in a quantum operation dependency graph on a quantum circuit fabric. This is, however, a very expensive proposition that requires large amounts of processing time. Instead, LEQA, which is based on computing the neighborhood population counts of qubits, can produce estimates of the circuit latency with good accuracy (i.e., an average of less than 3% error) with up to two orders of magnitude speedup for mid-size benchmarks. This speedup is expected to increase superlinearly as a function of circuit size (operation count).
LEQA:映射到量子电路结构的量子算法的延迟估计
本文提出了一种用于评估量子算法映射到量子结构的性能的快速延迟估计工具LEQA。实际的量子算法延迟可以通过在量子电路结构上的量子操作依赖图中执行量子指令和量子比特的详细调度、放置和路由来计算。然而,这是一个非常昂贵的提议,需要大量的处理时间。相反,LEQA基于计算量子位的邻域人口计数,可以以良好的精度(即平均误差小于3%)产生电路延迟的估计,对于中等规模的基准测试,其速度可提高两个数量级。这种加速预计将作为电路大小(运算次数)的函数超线性增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信