Memory reduction and image quality enhancement method for classified vector quantization

H. Dujmic, N. Rožić, M. Russo
{"title":"Memory reduction and image quality enhancement method for classified vector quantization","authors":"H. Dujmic, N. Rožić, M. Russo","doi":"10.1109/ISSPA.2003.1224654","DOIUrl":null,"url":null,"abstract":"This paper considers new memory reduction and image quality enhancement method for classified vector quantization (CVQ) using symmetry reflection, rotation and inversion of edge subimages. These are used to join appropriate edge classes thus reducing memory requirements for edge codebooks by 4(8) times. Besides the memory reduction and increases of PSNR for images outside the training set our method also relieves codebook generation for high bit rate by reducing the number of images that should be inside the training set. The proposed method has been tested with two different classification methods in order to ensure generality of the method.","PeriodicalId":264814,"journal":{"name":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","volume":"5 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2003.1224654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers new memory reduction and image quality enhancement method for classified vector quantization (CVQ) using symmetry reflection, rotation and inversion of edge subimages. These are used to join appropriate edge classes thus reducing memory requirements for edge codebooks by 4(8) times. Besides the memory reduction and increases of PSNR for images outside the training set our method also relieves codebook generation for high bit rate by reducing the number of images that should be inside the training set. The proposed method has been tested with two different classification methods in order to ensure generality of the method.
分类矢量量化的内存减少和图像质量增强方法
提出了一种基于边缘子图像对称反射、旋转和反演的分类矢量量化(CVQ)算法。这些用于加入适当的边缘类,从而将边缘码本的内存需求减少4(8)倍。除了对训练集外的图像减少内存和提高PSNR外,我们的方法还通过减少应该在训练集内的图像数量来减轻高比特率的码本生成。为了保证该方法的通用性,用两种不同的分类方法对该方法进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信