Neural Network Based Adaptive Model Predictive Control for Power Converters Under Load Parameter Uncertainties

Daming Wang, Z. J. Shen, Xin Yin, Sai Tang, Jui-Pin Wang, Zhikang Shuai
{"title":"Neural Network Based Adaptive Model Predictive Control for Power Converters Under Load Parameter Uncertainties","authors":"Daming Wang, Z. J. Shen, Xin Yin, Sai Tang, Jui-Pin Wang, Zhikang Shuai","doi":"10.1109/CEECT55960.2022.10030277","DOIUrl":null,"url":null,"abstract":"This article proposes a new neural network based adaptive model predictive control (named NN-AMPC) for power converters under load parameter uncertainties. Firstly, a supervisor MPC controller is designed for power converter using matched model parameters. Next, a NN is built and trained offline utilizing the operating information from the supervisor controller. A practical adaptive MPC controller using FPGA is then set up utilizing the trained NN to control the power converter online. The proposed NN-AMPC can adaptively track the variation of load parameters without extra identification process of load parameters. The dynamic response of the NN-AMPC under step changes in load parameters are analyzed and compared with conventional MPC. The concept of NN-AMPC is verified by experimental results on a 3-phase voltage source inverter (VSI) as the case study. It is shown that, the FPGA-based NN-AMPC controller offers better dynamic performance in the presence of uncertain parameters while utilizes reduced FPGA resource requirement compared with the observer based MPC controller.","PeriodicalId":187017,"journal":{"name":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEECT55960.2022.10030277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article proposes a new neural network based adaptive model predictive control (named NN-AMPC) for power converters under load parameter uncertainties. Firstly, a supervisor MPC controller is designed for power converter using matched model parameters. Next, a NN is built and trained offline utilizing the operating information from the supervisor controller. A practical adaptive MPC controller using FPGA is then set up utilizing the trained NN to control the power converter online. The proposed NN-AMPC can adaptively track the variation of load parameters without extra identification process of load parameters. The dynamic response of the NN-AMPC under step changes in load parameters are analyzed and compared with conventional MPC. The concept of NN-AMPC is verified by experimental results on a 3-phase voltage source inverter (VSI) as the case study. It is shown that, the FPGA-based NN-AMPC controller offers better dynamic performance in the presence of uncertain parameters while utilizes reduced FPGA resource requirement compared with the observer based MPC controller.
负载参数不确定下基于神经网络的自适应模型预测控制
提出了一种新的基于神经网络的自适应模型预测控制方法(NN-AMPC)。首先,利用匹配的模型参数,设计了功率变换器的监督MPC控制器。接下来,利用来自监督控制器的运行信息构建和离线训练一个神经网络。然后利用训练好的神经网络建立了实用的FPGA自适应MPC控制器,对功率变换器进行在线控制。所提出的神经网络- ampc可以自适应跟踪负荷参数的变化,而不需要额外的负荷参数识别过程。分析了负载参数阶跃变化下NN-AMPC的动态响应,并与传统MPC进行了比较。以三相电压源逆变器(VSI)为例,验证了神经网络- ampc的概念。结果表明,与基于观测器的MPC控制器相比,基于FPGA的NN-AMPC控制器在不确定参数存在时具有更好的动态性能,同时减少了对FPGA资源的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信