Cluster Tendency Assessment for Fuzzy Clustering of Incomplete Data

Ludmila Himmelspach, Daniel Hommers, Stefan Conrad
{"title":"Cluster Tendency Assessment for Fuzzy Clustering of Incomplete Data","authors":"Ludmila Himmelspach, Daniel Hommers, Stefan Conrad","doi":"10.2991/eusflat.2011.136","DOIUrl":null,"url":null,"abstract":"The quality of results for partitioning clustering algorithms depends on the assumption made on the number of clusters presented in the data set. Applying clustering methods on real data missing values turn out to be an additional challenging problem for clustering algorithms. Fuzzy clustering approaches adapted to incomplete data perform well for a given number of clusters. In this study, we analyse dierent cluster validity functions in terms of applicability on incomplete data on the one hand. On the other hand we analyse in experiments on several data sets to what extent the clustering results produced by fuzzy clustering methods for incomplete data reect the distribution structure of data.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The quality of results for partitioning clustering algorithms depends on the assumption made on the number of clusters presented in the data set. Applying clustering methods on real data missing values turn out to be an additional challenging problem for clustering algorithms. Fuzzy clustering approaches adapted to incomplete data perform well for a given number of clusters. In this study, we analyse dierent cluster validity functions in terms of applicability on incomplete data on the one hand. On the other hand we analyse in experiments on several data sets to what extent the clustering results produced by fuzzy clustering methods for incomplete data reect the distribution structure of data.
不完全数据模糊聚类的聚类倾向评价
划分聚类算法的结果质量取决于对数据集中呈现的聚类数量所做的假设。将聚类方法应用于真实数据缺失值是聚类算法面临的另一个挑战。适用于不完整数据的模糊聚类方法在给定数量的聚类中表现良好。在本研究中,我们一方面分析了不同的聚类效度函数在不完全数据上的适用性。另一方面,通过实验分析了模糊聚类方法对不完整数据的聚类结果在多大程度上反映了数据的分布结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信