Micro-Doppler Gesture Recognition using Doppler, Time and Range Based Features

M. Ritchie, Aaron M. Jones
{"title":"Micro-Doppler Gesture Recognition using Doppler, Time and Range Based Features","authors":"M. Ritchie, Aaron M. Jones","doi":"10.1109/RADAR.2019.8835782","DOIUrl":null,"url":null,"abstract":"This paper presents micro-Doppler analysis and classification results from radar measurements of various hand gestures. A new database of 6 individuals completing 4 separate gestures with over 3,000 repetitions was recorded using a 24 GHz Ancortek radar system. The micro-Doppler signatures from these gestures were generated, features extracted and multiple different classifiers applied to this gesture data. A typical micro-Doppler classification process aims to use either a single range bin of data, average over a series of range bins or align all the target signal to a single bin. Different to previous techniques, the paper presents a method that uses multiple ranges bins to produce a spectrogram per range bin in order to represent the observed gesture over all four dimensions of time, Doppler, space and polarization. A comparison of the traditional and the newly proposed technique is shown and the improvements demonstrated are observed to be significant.","PeriodicalId":360366,"journal":{"name":"2019 IEEE Radar Conference (RadarConf)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Radar Conference (RadarConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2019.8835782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper presents micro-Doppler analysis and classification results from radar measurements of various hand gestures. A new database of 6 individuals completing 4 separate gestures with over 3,000 repetitions was recorded using a 24 GHz Ancortek radar system. The micro-Doppler signatures from these gestures were generated, features extracted and multiple different classifiers applied to this gesture data. A typical micro-Doppler classification process aims to use either a single range bin of data, average over a series of range bins or align all the target signal to a single bin. Different to previous techniques, the paper presents a method that uses multiple ranges bins to produce a spectrogram per range bin in order to represent the observed gesture over all four dimensions of time, Doppler, space and polarization. A comparison of the traditional and the newly proposed technique is shown and the improvements demonstrated are observed to be significant.
基于多普勒、时间和距离特征的微多普勒手势识别
本文介绍了雷达测量各种手势的微多普勒分析和分类结果。使用24 GHz Ancortek雷达系统记录了6个人完成4个不同手势的新数据库,重复次数超过3000次。生成这些手势的微多普勒特征,提取特征,并对这些手势数据应用多个不同的分类器。一个典型的微多普勒分类过程的目的是使用单个范围的数据桶,对一系列范围桶进行平均,或将所有目标信号对齐到单个桶。与以前的技术不同,本文提出了一种方法,该方法使用多个距离箱来生成每个距离箱的频谱图,以便在时间、多普勒、空间和极化的所有四个维度上表示观察到的手势。对传统技术和新提出的技术进行了比较,并观察到所证明的改进是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信